ELF>@P(@8 @`~`~AA0 0 0 lwlw+0S888$$Ptd888 QtdRtd``GNU#%I ;[G p" #@012a@AT% $@     }vRPeߗ`c75kΑ7 q3`%ۃ1?BDGH I(J0K8L@MHNPOX`PhQpxRSTUVWXYZ[\]^_`abcde f(g0h8i@jHPlXm`nhoppxrstuv wxy {|}~ (08@HPX`hpx (08@HPX`hpx  (08@HPX`hHH>HtH5?%?@%?h%?h%?h%?h%?h%?h%?h%?hp%?h`%?h P%?h @%?h 0%?h %z?h %r?h%j?h%b?h%Z?h%R?h%J?h%B?h%:?h%2?h%*?hp%"?h`%?hP%?h@% ?h0%?h %>h%>h%>h%>h %>h!%>h"%>h#%>h$%>h%%>h&%>h'p%>h(`%>h)P%>h*@%>h+0%>h, %z>h-%r>h.%j>h/%b>h0%Z>h1%R>h2%J>h3%B>h4%:>h5%2>h6%*>h7p%">h8`%>h9P%>h:@% >h;0%>h< %=h=%=h>%=h?%=h@%=hA%=hB%=hC%=hD%=hE%=hF%=hGp%=hH`%=hIP%=hJ@%=hK0%=hL %z=hM%r=hN%j=hO%b=hP%Z=hQ%R=hR%J=hS%B=hT%:=hU%2=hV%*=hWp%"=hX`%=hYP%=hZ@% =h[0%=h\ %<h]%<h^%<h_%<h`%<ha%<hb%<hc%<hd%<he%<hf%<hgp%<hh`%<hiP%<hj@%<hk0%<hl %z<hm%r<hn%j<ho%b<hp%Z<hq%R<hr%J<hs%B<ht%:<hu%2<hv%*<hwp%"<hx`%<hyP%<hz@% <h{0%<h| %;h}%;h~%;h%;h%;h%;h%;h%;h%;h%;h%;hp%;h`%;hP%;h@%;h0%;h %z;h%r;h%j;h%b;h%Z;h%R;h%J;h%B;h%:;h%2;h%*;hp%";h`%;hP%;h@% ;h0%;h %:h%:h%:h%:h%:h%:h%:h%:h%:h%:h%:hp%:h`%:hP%:h@%:h0%:h %z:h%r:h%j:h%b:h%Z:h%R:h%J:h%B:h%::h%2:h%*:hp%":h`%:hP%:h@% :h0%:h %9h%9h%9h%9h%9h%9h%9h%9h%9h%9h%9hp%9h`%9hP%9h@ATI1HU1QHtLI$H5)vHHNHExHAHEuH_HHEuHLADZ]A\AWIAVIH5>AUIATUSHAPHLHHIHu(LLH53HH1H81'qLHu9LLHCIMLHHX0H5H81)LLHHtHMAuHfHMuHVAZD[]A\A]A^A_AWIAVIH5AAUIATUSHAPHLHHIHu(LLH5HH0H81*qLHu9LLHFIMLHH[/H5H81)LLHHtHMAuHiHMuHYAZD[]A\A]A^A_AVIAUIHATUSDHt5H;/HuE1tHLLAHMu)HH/AH8twE1[D]A\A]A^AVAUIATUQHx_H6HuH6Ht#H9tHx/H5٢H8E1L%~Mt I$H5LIHtHMIHuL-HtHIHAH #HLH!xkAH LLHxHAH LLHix%E1H LLHIxIHMHtZL]A\A]A^AWAAVIAUMATUHSLHH=`HT$zHT$HMfInfHnDIflH@(H@p@HtHEIl$ ID$@ID$HHIT$PID$XID$8Ml$`IEHtHWI\$hADŽ$IDŽ$ID$xIDŽ$A$A$AF%t6tKuQH ID$0l=t#=u5HqID$0PHjID$0BHID$04ID$0)H+H5H8I $uLE1LHL[]A\A]A^A_AVIHAUIATUDSHHHIH@u#H5+LLH5H81ML$(ID$ Mt ILLIL9v#H*ILLH5vH81lAuNH9sIHl$RLIPMH¢H1KH11Y^yI $uLE1HL[]A\A]A^UH^H dSHgH$HU HD$H^HD$(HU HD$0H^HD$PHKU HD$XH^HD$xH#U H$H^H$HU H$H~^HD$HD$fD$ D$"HD$8HD$@fD$HD$JHD$`HD$hfD$pD$rHDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$HgR H$H]H$H H$H]H$H=G H$ H]H$@H H$HHx]H$hHy H$pHb]H$H H$HL]HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$EHDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$0fDŽ$8Ƅ$:HDŽ$P3HDŽ$XfDŽ$`Ƅ$bHDŽ$x$HDŽ$fDŽ$Ƅ$HDŽ$7H$H H$HX\H$H H$HB\H$Hc= H$H,\H$0H H$8H\H$XH H$`H\HDŽ$fDŽ$Ƅ$HDŽ$&HDŽ$fDŽ$Ƅ$HDŽ$=HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@BHDŽ$HfDŽ$PƄ$RHDŽ$h5HDŽ$pfDŽ$xƄ$zH$H H$HZH$H;: H$HZH$H-K H$HZH$H_ H$HZH$ H H$(HZH$HHkH H$PHZHDŽ$f HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$#HDŽ$fDŽ$Ƅ$HDŽ$0&HDŽ$8fDŽ$@Ƅ$BHDŽ$X H$pH< H$xHYH$H ? H$HYH$H+< H$HlYH$HM8 H$HVYH$HGB H$H@YHDŽ$`fDŽ$hƄ$jHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$ HDŽ$ HDŽ$(fDŽ$0Ƅ$2H$8H8 H$@H:XH$`Hc= H$hH$XH$H%3 H$HXH$H7@ H$HWH$H7 H$HWH$Hk; H$HWHDŽ$HHDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$(H/1 H$0HVH$PH= H$XHVH$xH35 H$HVH$H9 H$HVH$H0 H$HVHDŽ$fDŽ$ Ƅ$"HDŽ$8 HDŽ$@fDŽ$HƄ$JHDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$H$H6 H$HzUH$H. H$ HdUH$@H@ H$HHNUH$hHo6 H$pH8UH$H< H$H"UH$H33 H$H UHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(!HDŽ$0fDŽ$8Ƅ$:HDŽ$P HDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$H7 H$HTH$H- H$HTH$0H[: H$8HSH$XH0 H$`HSH$H2 H$HSHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$H$H H$HRH$H7 H$HRH$H. H$HRH$ H8 H$(HxRH$HH9. H$PHbRH$pH{6 H$xHLRHDŽ$%HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BHDŽ$XHDŽ$`fDŽ$hƄ$jHDŽ$H$H+ H$HXQH$H3 H$HBQH$Hc* H$H,QH$ He3 H$ HQH$8 H* H$@ HQHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$( fDŽ$0 Ƅ$2 HDŽ$H HDŽ$P fDŽ$X Ƅ$Z H$` Hy0 H$h HOH$ H H$ HOH$ H] H$ HOH$ H H$ HOH$ HQ( H$ HOH$( H H$0 HOHDŽ$p HDŽ$x fDŽ$ Ƅ$ HDŽ$ "HDŽ$ fDŽ$ Ƅ$ HDŽ$ &HDŽ$ fDŽ$ Ƅ$ HDŽ$ 2HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$" HDŽ$8 *H$P H) H$X HNH$x Hi H$ HNH$ H{& H$ HlNH$ H H$ HVNH$ H- H$ H@NHDŽ$@ fDŽ$H Ƅ$J HDŽ$` HDŽ$h fDŽ$p Ƅ$r HDŽ$ (HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ +HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ H$ H H$ H:MH$@ H2 H$H H$MH$h H%) H$p HMH$ HG2 H$ HLH$ H( H$ HLH$ H, H$ HLHDŽ$( #HDŽ$0 fDŽ$8 Ƅ$: HDŽ$P HDŽ$X fDŽ$` Ƅ$b HDŽ$x HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ H$ H H$ HKH$0 H/ H$8 HKH$X H$ H$` HKH$ H50 H$ HKH$ H7& H$ HKHDŽ$ fDŽ$ Ƅ$ HDŽ$ "HDŽ$ fDŽ$( Ƅ$* HDŽ$@ HDŽ$H fDŽ$P Ƅ$R HDŽ$h HDŽ$p fDŽ$x Ƅ$z HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ H$ H0 H$ HzJH$ H+' H$ HdJH$ H-/ H$( HNJH$H H& H$P H8JH$p H- H$x H"JH$ H" H$ H JHDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$0 HDŽ$8 fDŽ$@ Ƅ$B HDŽ$X HDŽ$` fDŽ$h Ƅ$j HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ H$ HW- H$ HIH$ HY# H$ HIH$H/ H$HHH$8H]& H$@HHH$`H$ H$hHHHDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$fDŽ$Ƅ$ HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$HHDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$H$H H$HGH$H H$HGH$H H$HGH$H$ H$HxGH$(H H$0HbGH$PH;# H$XHLGHDŽ$&HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$*HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$ Ƅ$"HDŽ$8%HDŽ$@fDŽ$HƄ$JHDŽ$`H$xH H$HXFH$H& H$HBFH$H H$H,FH$H%& H$HFH$Hg H$ HFHDŽ$hfDŽ$pƄ$rHDŽ$&HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$!HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(!HDŽ$0fDŽ$8Ƅ$:H$@H( H$HHDH$hH H$pHDH$H& H$HDH$H H$HDH$H + H$HDH$HC! H$HDHDŽ$PHDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$0H& H$8HCH$XH H$`HCH$H) H$HlCH$H H$HVCH$H* H$H@CHDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$H* H$H:BH$ H H$(H$BH$HH+ H$PHBH$pHg H$xHAH$H H$HAH$H H$HAHDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$0LHDŽ$8fDŽ$@Ƅ$BHDŽ$X HDŽ$`fDŽ$hƄ$jHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$"HDŽ$fDŽ$Ƅ$HDŽ$[H$HO H$H@H$H H$H@H$8H H$@H@H$`H3 H$hH@H$H( H$H@HDŽ$fDŽ$Ƅ$HDŽ$?HDŽ$fDŽ$Ƅ$ HDŽ$ .HDŽ$(fDŽ$0Ƅ$2HDŽ$HHDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$H$H H$Hz?H$H H$Hd?H$HH1 H$HN?H$(H/ H$0H8?H$PH12 H$XH"?H$xH H$H ?HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$ Ƅ$"HDŽ$8HDŽ$@fDŽ$HƄ$JHDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$&H$H% H$H>H$H1$ H$H>H$H. H$H=H$He% H$ H=H$@H H$HH=HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$( HDŽ$0fDŽ$8Ƅ$:HDŽ$P#HDŽ$XfDŽ$`Ƅ$bH$hHQ H$pH<H$Hs H$H<H$H H$H<H$H H$Hx<H$H! H$Hb<H$0H( H$8HL<HDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$THDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@ H$XH H$`HX;H$H- H$HB;H$H% H$H,;H$H H$H;H$Hg H$H;HDŽ$HfDŽ$PƄ$RHDŽ$hHDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$!HDŽ$fDŽ$Ƅ$HDŽ$"HDŽ$fDŽ$Ƅ$H$ H H$(H9H$HH H$PH9H$pH H$xH9H$H_ H$H9H$H H$H9H$H " H$H9HDŽ$0 HDŽ$8fDŽ$@Ƅ$BHDŽ$X.HDŽ$`fDŽ$hƄ$jHDŽ$)HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$ H$H H$H8H$8H H$@H8H$`H H$hHl8H$H* H$HV8H$H) H$H@8HDŽ$fDŽ$Ƅ$ HDŽ$ HDŽ$(fDŽ$0Ƅ$2HDŽ$H7HDŽ$PfDŽ$XƄ$ZHDŽ$pFHDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$H:( H$H:7H$H) H$H$7H$(H( H$0H7H$PH( H$XH6H$xH( H$H6H$HL( H$H6HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$ Ƅ$"HDŽ$8HDŽ$@fDŽ$HƄ$JHDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$H$H' H$H$HAH$H, H$ HAH$@H H$HHAH$hH6 H$pHA H$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$0fDŽ$8Ƅ$:HDŽ$P.HDŽ$XfDŽ$`Ƅ$bHDŽ$x9HDŽ$fDŽ$Ƅ$H$H H$HA(H$H` H$HA0H$H% H$HA8H$H% H$HA@H$0Hl% H$8HAHH$XH# H$`HAPHDŽ$)HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$ fDŽ$(Ƅ$*HDŽ$@HDŽ$HfDŽ$PƄ$RHDŽ$hH$HT$ H$HAXH$Hx H$HA`H$Hm H$HAhH$Hf# H$HApH$ H" H$(HAxHDŽ$pfDŽ$xƄ$zHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$0HDŽ$8fDŽ$@Ƅ$BH$HHL H$PHH$pH H$xHH$H H$HH$H H$HH$H H$HH$HA" H$HHDŽ$X HDŽ$`fDŽ$hƄ$jHDŽ$ HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$ HDŽ$ H$8HA! H$@HH$`H H$hHH$H! H$HH$H H$HH$H H$HHDŽ$(fDŽ$0Ƅ$2HDŽ$HHDŽ$PfDŽ$XƄ$ZHDŽ$pHDŽ$xfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$H$H, H$HH$(H H$0HH$PHP H$XHH$xH H$HH$H H$HH$H H$HHDŽ$HDŽ$fDŽ$ Ƅ$"HDŽ$8HDŽ$@fDŽ$HƄ$JHDŽ$`HDŽ$hfDŽ$pƄ$rHDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$ H$H H$HH$Hu H$ HH$@HP H$HHH$hH H$pH H$H H$H(H0HDŽ$HQxfDŽ$Ƅ$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$(HDŽ$0fDŽ$8Ƅ$:HDŽ$PHDŽ$XfDŽ$`Ƅ$bHDŽ$xHDŽ$fDŽ$Ƅ$HDŽ$ HDŽ$fDŽ$Ƅ$H$H+ H$H$HAH$ H H$ HAH$0 H H$8 HAH$X H H$` HA H$ HM H$ HA(H$HDŽ$HDŽ$fDŽ$Ƅ$HDŽ$HDŽ$fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$( Ƅ$* HDŽ$@ HDŽ$H fDŽ$P Ƅ$R HDŽ$h HDŽ$p fDŽ$x Ƅ$z HDŽ$ H$ H< H$ HA0H$ Ha H$ HA8H$ H H$!HA@H$ !H& H$(!HAHH$H!H H$P!HAPHDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$ HDŽ$ fDŽ$ Ƅ$ HDŽ$!HDŽ$!fDŽ$!Ƅ$!HDŽ$0!HDŽ$8!fDŽ$@!Ƅ$B!HDŽ$X!)HDŽ$`!fDŽ$h!Ƅ$j!H$p!H H$x!HAXH$!H H$!HA`H$!H H$!HAhH$!H H$!HApH$"H H$"H$@"HHH$8"HDŽ$!HDŽ$!fDŽ$!Ƅ$!HDŽ$!HDŽ$!fDŽ$!Ƅ$!HDŽ$!HDŽ$!fDŽ$!Ƅ$!HDŽ$!gHDŽ$"fDŽ$"Ƅ$ "HDŽ$ "HDŽ$("fDŽ$0"Ƅ$2"HDŽ$H"H$`"Hv H$h"H$"HBH$"HK H$"HB H$"H H$"HB(H$#H H$#HB0H$"HHDŽ$P"fDŽ$X"Ƅ$Z"HDŽ$p"HDŽ$x"fDŽ$"Ƅ$"HDŽ$"HDŽ$"fDŽ$"Ƅ$"HDŽ$"HDŽ$"fDŽ$"Ƅ$"HDŽ$"HDŽ$"fDŽ$"Ƅ$"HDŽ$# HDŽ$#fDŽ$ #Ƅ$"#H$(#HS H$0#HB8H$P#Hp H$X#HB@H$x#H= H$#HBHH$#H3 H$#HBPH$#Hgx H$#HBXH`H$#HH H$#HDŽ$8#4HDŽ$@#fDŽ$H#Ƅ$J#HDŽ$`# HDŽ$h#fDŽ$p#Ƅ$r#HDŽ$# HDŽ$#fDŽ$#Ƅ$#HDŽ$#HDŽ$#fDŽ$#Ƅ$#HDŽ$#HDŽ$#fDŽ$#Ƅ$#HDŽ$$ H$ $HBH$@$HO H$H$HBH$h$H H$p$HBH$$H H$$HB H$$H H$$HB(H$$HDŽ$$fDŽ$$Ƅ$$HDŽ$($ HDŽ$0$fDŽ$8$Ƅ$:$HDŽ$P$ HDŽ$X$fDŽ$`$Ƅ$b$HDŽ$x$HDŽ$$fDŽ$$Ƅ$$HDŽ$$HDŽ$$fDŽ$$Ƅ$$HDŽ$$HDŽ$$fDŽ$$Ƅ$$H$$H H$$HB0H$%H H$%HB8H$0%HW H$8%HB@H$X%H H$`%HBHH$%H H$%HBPH$%H H$%HBXHDŽ$$ HDŽ$$fDŽ$%Ƅ$%HDŽ$%HDŽ$ %fDŽ$(%Ƅ$*%HDŽ$@%HDŽ$H%fDŽ$P%Ƅ$R%HDŽ$h%THDŽ$p%fDŽ$x%Ƅ$z%HDŽ$% HDŽ$%fDŽ$%Ƅ$%HDŽ$%H$%H H$%HB`H$%H~ H$&HBhH$ &H H$(&HBpH$H&H H$P&H$x&HH$p&HpHDŽ$%fDŽ$%Ƅ$%HDŽ$%HDŽ$%fDŽ$%Ƅ$%HDŽ$&HDŽ$&fDŽ$&Ƅ$&HDŽ$0&HDŽ$8&fDŽ$@&Ƅ$B&HDŽ$X&HDŽ$`&fDŽ$h&Ƅ$j&HDŽ$&HDŽ$&fDŽ$&Ƅ$&H$&Hh H$&HH$&H H$&HH$&H H$&HH$'H6 H$'HH$8'H H$@'HH$`'H H$h'HHDŽ$&HDŽ$&fDŽ$&Ƅ$&HDŽ$&HDŽ$&fDŽ$&Ƅ$&HDŽ$&%HDŽ$'fDŽ$'Ƅ$ 'HDŽ$ '3HDŽ$('fDŽ$0'Ƅ$2'HDŽ$H'HDŽ$P'fDŽ$X'Ƅ$Z'HDŽ$p'H$'H H$'HH$'H H$'HH$'H  H$'HH$(HD H$(HHH$((H- HZ H$0(HDŽ$x'fDŽ$'Ƅ$'HDŽ$'HDŽ$'fDŽ$'Ƅ$'HDŽ$'HDŽ$'fDŽ$'Ƅ$'HDŽ$' HDŽ$'fDŽ$'Ƅ$'HDŽ$(HDŽ$(fDŽ$ (Ƅ$"(HDŽ$8(HDŽ$@(fDŽ$H(Ƅ$J(H$X(HBH$x(H H$(H$(HBH$(H H$(H$(HB(H$)H H$ )HB0H$P(H$(HhH$(HXHDŽ$`(HDŽ$h(fDŽ$p(Ƅ$r(HDŽ$(HDŽ$(fDŽ$(Ƅ$(HDŽ$(HDŽ$(fDŽ$(Ƅ$(HDŽ$(HDŽ$(fDŽ$(Ƅ$(HDŽ$)HDŽ$)fDŽ$)Ƅ$)HDŽ$() H$@)HQ H$H)HB8H$h)H H$p)HB@H$)H H$)HBHH$)H2 H$)HBPH$)H H$)HBXHDŽ$0)fDŽ$8)Ƅ$:)HDŽ$P)HDŽ$X)fDŽ$`)Ƅ$b)HDŽ$x) HDŽ$)fDŽ$)Ƅ$)HDŽ$); HDŽ$)fDŽ$)Ƅ$)HDŽ$)HDŽ$)fDŽ$)Ƅ$)HDŽ$) HDŽ$)fDŽ$*Ƅ$*H$*H6 H$*HB`H$0*H H$8*HBhH$X*HD H$`*HBpH$*H H$*HBxH$*Hh H$*HH$*Hz H$*HHDŽ$*HDŽ$ *fDŽ$(*Ƅ$**HDŽ$@*HDŽ$H*fDŽ$P*Ƅ$R*HDŽ$h*HDŽ$p*fDŽ$x*Ƅ$z*HDŽ$*HDŽ$*fDŽ$*Ƅ$*HDŽ$*HDŽ$*fDŽ$*Ƅ$*HDŽ$*H$*Hv H$+HH˜H$ +Hb HH$(+H$P+HBH$p+H H$x+HBH$+Hd H$+HBH$H+HDŽ$*fDŽ$*Ƅ$*HDŽ$+HDŽ$+fDŽ$+Ƅ$+HDŽ$0+HDŽ$8+fDŽ$@+Ƅ$B+HDŽ$X+HDŽ$`+fDŽ$h+Ƅ$j+HDŽ$+HDŽ$+fDŽ$+Ƅ$+HDŽ$+ HDŽ$+fDŽ$+Ƅ$+H$+Hp H$+HB H$+HN H$+HB(H$,H H$,HB0H$8,Hp H$@,HB8H$`,H H$h,HB@H$,H- H$,HBHHDŽ$+HDŽ$+fDŽ$+Ƅ$+HDŽ$+HDŽ$,fDŽ$,Ƅ$ ,HDŽ$ , HDŽ$(,fDŽ$0,Ƅ$2,HDŽ$H, HDŽ$P,fDŽ$X,Ƅ$Z,HDŽ$p, HDŽ$x,fDŽ$,Ƅ$,HDŽ$,H$,H5 H$,HBPH$,H H$,HBXH$-H H$-HB`H$(-H0 H$0-HBhH$P-H H$X-HBpHDŽ$,fDŽ$,Ƅ$,HDŽ$,HDŽ$,fDŽ$,Ƅ$,HDŽ$,HDŽ$,fDŽ$,Ƅ$,HDŽ$-HDŽ$-fDŽ$ -Ƅ$"-HDŽ$8- HDŽ$@-fDŽ$H-Ƅ$J-HDŽ$`- HDŽ$h-fDŽ$p-Ƅ$r-H$x-Hr[ H$-HBxH$-HK H$-HH$-HK H$-HH$-H H$-HH$.HE H$ .HH$@.H H$H.HHDŽ$-i HDŽ$-fDŽ$-Ƅ$-HDŽ$-HDŽ$-fDŽ$-Ƅ$-HDŽ$-KHDŽ$-fDŽ$-Ƅ$-HDŽ$.HDŽ$.fDŽ$.Ƅ$.HDŽ$(. HDŽ$0.fDŽ$8.Ƅ$:.HDŽ$P.H$h.H H$p.HH$.H H$.HH$.H H$.HH$.H H$.HH$/H H$/HHDŽ$X.fDŽ$`.Ƅ$b.HDŽ$x.HDŽ$.fDŽ$.Ƅ$.HDŽ$. HDŽ$.fDŽ$.Ƅ$.HDŽ$.HDŽ$.fDŽ$.Ƅ$.HDŽ$.HDŽ$.fDŽ$/Ƅ$/HDŽ$/HDŽ$ /fDŽ$(/Ƅ$*/H$0/H H$8/HH$X/H- H$`/HH$/H H$/H$/HH$/H# H$/HH$/H H$0HH$/HHDŽ$@/HDŽ$H/fDŽ$P/Ƅ$R/HDŽ$h/HDŽ$p/fDŽ$x/Ƅ$z/HDŽ$/HDŽ$/fDŽ$/Ƅ$/HDŽ$/HDŽ$/fDŽ$/Ƅ$/HDŽ$/HDŽ$/fDŽ$/Ƅ$/HDŽ$0H$ 0Hc H$(0HH$H0H@ H$P0HH$p0H H$x0HH$0H H$0HH$0H; H$0H HDŽ$0fDŽ$0Ƅ$0HDŽ$00HDŽ$80fDŽ$@0Ƅ$B0HDŽ$X0HDŽ$`0fDŽ$h0Ƅ$j0HDŽ$0HDŽ$0fDŽ$0Ƅ$0HDŽ$0HDŽ$0fDŽ$0Ƅ$0HDŽ$0 HDŽ$0fDŽ$0Ƅ$0H$0H H$0H(H$1H H$1H0H$81H H$@1H8H$`1H2 H$h1H@H$1H$ H$1HHH$1H H$1HPHDŽ$0HDŽ$1fDŽ$1Ƅ$ 1HDŽ$ 1HDŽ$(1fDŽ$01Ƅ$21HDŽ$H1 HDŽ$P1fDŽ$X1Ƅ$Z1HDŽ$p1XHDŽ$x1fDŽ$1Ƅ$1HDŽ$1 HDŽ$1fDŽ$1Ƅ$1HDŽ$1H$1H H$1HXH$2H H$2H`H$(2H^ H$02HhH$P2H` H$X2HpH$x2H H$2HxHDŽ$1fDŽ$1Ƅ$1HDŽ$1$HDŽ$1fDŽ$1Ƅ$1HDŽ$2HDŽ$2fDŽ$ 2Ƅ$"2HDŽ$82HDŽ$@2fDŽ$H2Ƅ$J2HDŽ$`2HDŽ$h2fDŽ$p2Ƅ$r2HDŽ$2 HDŽ$2fDŽ$2Ƅ$2H$2H, H$2HH$2H H$2HH$2H H$2HH$3H H$ 3HH$@3H\ H$H3HH$h3H H$p3HHDŽ$2 HDŽ$2fDŽ$2Ƅ$2HDŽ$2HDŽ$2fDŽ$2Ƅ$2HDŽ$3HDŽ$3fDŽ$3Ƅ$3HDŽ$(3 HDŽ$03fDŽ$83Ƅ$:3HDŽ$P3&HDŽ$X3fDŽ$`3Ƅ$b3HDŽ$x3H$3H H$3HH$3Ht H$3HH$3H& H$3HH$4H H$4HH$04HJ H$84HHDŽ$3fDŽ$3Ƅ$3HDŽ$3HDŽ$3fDŽ$3Ƅ$3HDŽ$3HDŽ$3fDŽ$3Ƅ$3HDŽ$3HDŽ$3fDŽ$4Ƅ$4HDŽ$4HDŽ$ 4fDŽ$(4Ƅ$*4HDŽ$@4 HDŽ$H4fDŽ$P4Ƅ$R4H$X4H H$`4HH$4Hf H$4HH$4H H$4HH$4H~ H$4HH$4H H$5HH$ 5H H$(5HHDŽ$h4HDŽ$p4fDŽ$x4Ƅ$z4HDŽ$4 HDŽ$4fDŽ$4Ƅ$4HDŽ$4 HDŽ$4fDŽ$4Ƅ$4HDŽ$4HDŽ$4fDŽ$4Ƅ$4HDŽ$5HDŽ$5fDŽ$5Ƅ$5HDŽ$05H$H5H H$P5HH$p5H| H$x5HH$5HX H$5HH$5H H$5H H$5H" H$5H(HDŽ$85fDŽ$@5Ƅ$B5HDŽ$X5HDŽ$`5fDŽ$h5Ƅ$j5HDŽ$5HDŽ$5fDŽ$5Ƅ$5HDŽ$5HDŽ$5fDŽ$5Ƅ$5HDŽ$5HDŽ$5fDŽ$5Ƅ$5HDŽ$5 HDŽ$6fDŽ$6Ƅ$ 6H$6H H$6H0H$86Hc H$@6H8H$`6H H$h6H@H$6H H$6HHH$6H H$6HPH$6H H$6HXHDŽ$ 6 HDŽ$(6fDŽ$06Ƅ$26HDŽ$H6HDŽ$P6fDŽ$X6Ƅ$Z6HDŽ$p6HDŽ$x6fDŽ$6Ƅ$6HDŽ$6HDŽ$6fDŽ$6Ƅ$6HDŽ$6HDŽ$6fDŽ$6Ƅ$6HDŽ$68H$7HZ H$7H`H$(7H, H$07HhH$P7H6 H$X7HpH$x7H H$7HxH$7H H$7HHDŽ$6fDŽ$6Ƅ$6HDŽ$7 HDŽ$7fDŽ$ 7Ƅ$"7HDŽ$87 HDŽ$@7fDŽ$H7Ƅ$J7HDŽ$`7 HDŽ$h7fDŽ$p7Ƅ$r7HDŽ$7HDŽ$7fDŽ$7Ƅ$7HDŽ$7 HDŽ$7fDŽ$7Ƅ$7H$7H H$7HH$7H H$7HH$8Hi H$ 8HH$@8H H$H8HH$h8HD H$p8HH$8H H$8HHDŽ$7 HDŽ$7fDŽ$7Ƅ$7HDŽ$8 HDŽ$8fDŽ$8Ƅ$8HDŽ$(8HDŽ$08fDŽ$88Ƅ$:8HDŽ$P8HDŽ$X8fDŽ$`8Ƅ$b8HDŽ$x8 HDŽ$8fDŽ$8Ƅ$8HDŽ$8H$8HH H$8HH$8H( H$8HH$9H H$9H$89HH$X9H H$`9HH$09HƘHDŽ$8fDŽ$8Ƅ$8HDŽ$8HDŽ$8fDŽ$8Ƅ$8HDŽ$8HDŽ$8fDŽ$9Ƅ$9HDŽ$9HDŽ$ 9fDŽ$(9Ƅ$*9HDŽ$@9HDŽ$H9fDŽ$P9Ƅ$R9HDŽ$h9HDŽ$p9fDŽ$x9Ƅ$z9H$9H H$9H$9HH$9H H$9HH$9H H$:HH$ :H H$(:HH$H:H# H$P:HH$9HHDŽ$9HDŽ$9fDŽ$9Ƅ$9HDŽ$9HDŽ$9fDŽ$9Ƅ$9HDŽ$9HDŽ$9fDŽ$9Ƅ$9HDŽ$: HDŽ$:fDŽ$:Ƅ$:HDŽ$0:HDŽ$8:fDŽ$@:Ƅ$B:HDŽ$X: H$p:H H$x:HH$:H H$:HH$:H H$:H H$:H H$:H(H$;H H$;H0HDŽ$`:fDŽ$h:Ƅ$j:HDŽ$:HDŽ$:fDŽ$:Ƅ$:HDŽ$:HDŽ$:fDŽ$:Ƅ$:HDŽ$:HDŽ$:fDŽ$:Ƅ$:HDŽ$:HDŽ$;fDŽ$;Ƅ$ ;HDŽ$ ;HDŽ$(;fDŽ$0;Ƅ$2;H$8;H H$@;H8H@H$`;H HhH$h;H$;HBH$;H H$;HBH$;H H$;HBH$<H H$<HB H$;HDŽ$H; HDŽ$P;fDŽ$X;Ƅ$Z;HDŽ$p;HDŽ$x;fDŽ$;Ƅ$;HDŽ$;HDŽ$;fDŽ$;Ƅ$;HDŽ$;HDŽ$;fDŽ$;Ƅ$;HDŽ$; HDŽ$;fDŽ$;Ƅ$;HDŽ$< H$(<Hd H$0<HB(H$P<H H$X<HB0H$x<HN H$<HB8H$<H H$<HB@H$<Hx H$<HBHHDŽ$<fDŽ$ <Ƅ$"<HDŽ$8< HDŽ$@<fDŽ$H<Ƅ$J<HDŽ$`< HDŽ$h<fDŽ$p<Ƅ$r<HDŽ$<HDŽ$<fDŽ$<Ƅ$<HDŽ$< HDŽ$<fDŽ$<Ƅ$<HDŽ$< HDŽ$<fDŽ$<Ƅ$<H$<H H$<HBPH$=H H$ =HBXH$@=H H$H=HB`H$h=H H$p=HBhH$=H H$=HBpH$=H H$=HBxHDŽ$=HDŽ$=fDŽ$=Ƅ$=HDŽ$(=HDŽ$0=fDŽ$8=Ƅ$:=HDŽ$P= HDŽ$X=fDŽ$`=Ƅ$b=HDŽ$x= HDŽ$=fDŽ$=Ƅ$=HDŽ$=HDŽ$=fDŽ$=Ƅ$=HDŽ$=H$=H H$=HH$>H[ H$>HH$0>H H$8>HH$X>H+ H$`>HH$>H H$>HHDŽ$=fDŽ$=Ƅ$=HDŽ$= HDŽ$=fDŽ$>Ƅ$>HDŽ$>HDŽ$ >fDŽ$(>Ƅ$*>HDŽ$@> HDŽ$H>fDŽ$P>Ƅ$R>HDŽ$h> HDŽ$p>fDŽ$x>Ƅ$z>HDŽ$>HDŽ$>fDŽ$>Ƅ$>H$>H H$>H$>HH$>H H$?HH$ ?H H$(?HH$H?H% H$P?HH$p?H' H$x?HH$>HpHDŽ$>HDŽ$>fDŽ$>Ƅ$>HDŽ$>HDŽ$>fDŽ$>Ƅ$>HDŽ$?#HDŽ$?fDŽ$?Ƅ$?HDŽ$0?!HDŽ$8?fDŽ$@?Ƅ$B?HDŽ$X?HDŽ$`?fDŽ$h?Ƅ$j?HDŽ$?%H$?H H$?HH$?H H$?HH$?H H$?HH$@HB H$@HH$8@H H$@@HHDŽ$?fDŽ$?Ƅ$?HDŽ$?HDŽ$?fDŽ$?Ƅ$?HDŽ$?HDŽ$?fDŽ$?Ƅ$?HDŽ$?'HDŽ$@fDŽ$@Ƅ$ @HDŽ$ @2HDŽ$(@fDŽ$0@Ƅ$2@HDŽ$H@HDŽ$P@fDŽ$X@Ƅ$Z@H$`@H H$h@HH$@H H$@HH$@H H$@HH$@H H$@HH$AH H$AH$0AH(H$(AHPHDŽ$p@HDŽ$x@fDŽ$@Ƅ$@HDŽ$@HDŽ$@fDŽ$@Ƅ$@HDŽ$@ HDŽ$@fDŽ$@Ƅ$@HDŽ$@HDŽ$@fDŽ$@Ƅ$@HDŽ$AHDŽ$AfDŽ$ AƄ$"AHDŽ$8AH$PAH H$XAH0H$xAH5 H$AH8H$AHo H$AH@H$AH H$AHHH$AH H$AHPHDŽ$@AfDŽ$HAƄ$JAHDŽ$`AHDŽ$hAfDŽ$pAƄ$rAHDŽ$A HDŽ$AfDŽ$AƄ$AHDŽ$AHDŽ$AfDŽ$AƄ$AHDŽ$AHDŽ$AfDŽ$AƄ$AHDŽ$BHDŽ$BfDŽ$BƄ$BH$BHe H$ BHXH$@BHw H$HBH`H$hBHQ H$pBH$BHpH$BH* H$BHxH$BH H$BHH$BHHDŽ$(BHDŽ$0BfDŽ$8BƄ$:BHDŽ$PBZHDŽ$XBfDŽ$`BƄ$bBHDŽ$xBHDŽ$BfDŽ$BƄ$BHDŽ$BHDŽ$BfDŽ$BƄ$BHDŽ$BHDŽ$BfDŽ$BƄ$BHDŽ$B H$CH H$CHH$0CH H$8CHH$XCH_ H$`CHH$CH H$CHH$CH H$CHHDŽ$BfDŽ$CƄ$CHDŽ$CBHDŽ$ CfDŽ$(CƄ$*CHDŽ$@C HDŽ$HCfDŽ$PCƄ$RCHDŽ$hCHDŽ$pCfDŽ$xCƄ$zCHDŽ$CHDŽ$CfDŽ$CƄ$CHDŽ$C HDŽ$CfDŽ$CƄ$CH$CH H$CH$DHH$ DH H$(DHH$HDH H$PDHH$pDHrc H$xDHH$DHԐ H$DHH$CHÐHDŽ$CHDŽ$CfDŽ$CƄ$CHDŽ$DHDŽ$DfDŽ$DƄ$DHDŽ$0DHDŽ$8DfDŽ$@DƄ$BDHDŽ$XDHDŽ$`DfDŽ$hDƄ$jDHDŽ$D>HDŽ$DfDŽ$DƄ$DHDŽ$D$H$DH) H$DHH$DH H$DHHH$EH H$EH$@EHBH$`EH H$hEHBH$8EHDŽ$DfDŽ$DƄ$DHDŽ$DHDŽ$DfDŽ$DƄ$DHDŽ$DHDŽ$EfDŽ$EƄ$ EHDŽ$ EHDŽ$(EfDŽ$0EƄ$2EHDŽ$HEHDŽ$PEfDŽ$XEƄ$ZEHDŽ$pEHDŽ$xEfDŽ$EƄ$EH$EHC H$EHBH$EH H$EHB H$EH H$EH$FHB0H$(FH7 H$0FHB8H$PFHU H$XFHB@H$FHXHDŽ$EHDŽ$EfDŽ$EƄ$EHDŽ$E3HDŽ$EfDŽ$EƄ$EHDŽ$EHDŽ$EfDŽ$EƄ$EHDŽ$FHDŽ$FfDŽ$ FƄ$"FHDŽ$8FHDŽ$@FfDŽ$HFƄ$JFHDŽ$`F H$xFH H$FHBHH$FH9H H$FHBPH$FHM H$FHBXH$FH8 H$FHB`H$GH H$ GHBhHDŽ$hFfDŽ$pFƄ$rFHDŽ$F HDŽ$FfDŽ$FƄ$FHDŽ$F> HDŽ$FfDŽ$FƄ$FHDŽ$FHDŽ$FfDŽ$FƄ$FHDŽ$GHDŽ$GfDŽ$GƄ$GHDŽ$(GHDŽ$0GfDŽ$8GƄ$:GH$@GHM H$HGHBpH$hGHY H$pGHBxH$GH H$GH$GHH$GH H$GHH$HHC H$HHH$GH@HDŽ$PGHDŽ$XGfDŽ$`GƄ$bGHDŽ$xGHDŽ$GfDŽ$GƄ$GHDŽ$GHDŽ$GfDŽ$GƄ$GHDŽ$GHDŽ$GfDŽ$GƄ$GHDŽ$GHDŽ$GfDŽ$HƄ$HHDŽ$HH$0HH H$8HHH$XHH H$`HHH$HHT H$HHH$HH H$HHH$HHq H$HHHDŽ$ HfDŽ$(HƄ$*HHDŽ$@HHDŽ$HHfDŽ$PHƄ$RHHDŽ$hHHDŽ$pHfDŽ$xHƄ$zHHDŽ$H HDŽ$HfDŽ$HƄ$HHDŽ$H HDŽ$HfDŽ$HƄ$HHDŽ$HHDŽ$HfDŽ$HƄ$HH$HH҇ H$IHH$ IHt H$(IHH$HIH H$PIHH$pIH H$xIHH$IHڽ H$IHH$IH H$IHHDŽ$I(HDŽ$IfDŽ$IƄ$IHDŽ$0I#HDŽ$8IfDŽ$@IƄ$BIHDŽ$XIHDŽ$`IfDŽ$hIƄ$jIHDŽ$I HDŽ$IfDŽ$IƄ$IHDŽ$IHDŽ$IfDŽ$IƄ$IHDŽ$IH$IH H$IHH$JHb H$JHH$8JH, H$@JHH$`JH H$hJHH$JHS H$JHHDŽ$IfDŽ$IƄ$IHDŽ$IHDŽ$JfDŽ$JƄ$ JHDŽ$ JHDŽ$(JfDŽ$0JƄ$2JHDŽ$HJHDŽ$PJfDŽ$XJƄ$ZJHDŽ$pJHDŽ$xJfDŽ$JƄ$JHDŽ$JHDŽ$JfDŽ$JƄ$JH$JH? H$JH H$JH H$JH(H$KH H$KH0H$(KH H$0KH8H$PKH H$XKH@H$xKHd H$KHHHDŽ$JHDŽ$JfDŽ$JƄ$JHDŽ$JHDŽ$JfDŽ$JƄ$JHDŽ$KHDŽ$KfDŽ$ KƄ$"KHDŽ$8KHDŽ$@KfDŽ$HKƄ$JKHDŽ$`K HDŽ$hKfDŽ$pKƄ$rKHDŽ$K H$KH H$KHPH$KH$ H$KHXH$KH H$KH`H$LH H$ LHhH$@LHP/ H$HLHpHDŽ$KfDŽ$KƄ$KHDŽ$KHDŽ$KfDŽ$KƄ$KHDŽ$KHDŽ$KfDŽ$KƄ$KHDŽ$LHDŽ$LfDŽ$LƄ$LHDŽ$(LHDŽ$0LfDŽ$8LƄ$:LHDŽ$PL"HDŽ$XLfDŽ$`LƄ$bLH$hLHH H$pLH$LHH$LH H$LHH$LH H$LHH$MH H$MHH$0MH H$8MHH$LHpHDŽ$xLHDŽ$LfDŽ$LƄ$LHDŽ$LHDŽ$LfDŽ$LƄ$LHDŽ$LHDŽ$LfDŽ$LƄ$LHDŽ$LHDŽ$LfDŽ$MƄ$MHDŽ$MHDŽ$ MfDŽ$(MƄ$*MHDŽ$@MH$XMH* H$`MHH$MHY# H$MHH$MH H$MHH$MH# H$MHH$MHw H$NHHDŽ$HMfDŽ$PMƄ$RMHDŽ$hMHDŽ$pMfDŽ$xMƄ$zMHDŽ$M= HDŽ$MfDŽ$MƄ$MHDŽ$MHDŽ$MfDŽ$MƄ$MHDŽ$MHDŽ$MfDŽ$MƄ$MHDŽ$N HDŽ$NfDŽ$NƄ$NH$ NH H$(NHH$HNH H$PNHH$pNH H$xNHH$NH H$NHH$NH% H$NHH$NH# H$NHHDŽ$0N"HDŽ$8NfDŽ$@NƄ$BNHDŽ$XN HDŽ$`NfDŽ$hNƄ$jNHDŽ$N HDŽ$NfDŽ$NƄ$NHDŽ$NHDŽ$NfDŽ$NƄ$NHDŽ$NHDŽ$NfDŽ$NƄ$NHDŽ$NH$OH H$OHH$8OH H$@OHH$`OHÈ H$hOHH$OHպ H$OHH$OH H$OH HDŽ$OfDŽ$OƄ$ OHDŽ$ OHDŽ$(OfDŽ$0OƄ$2OHDŽ$HOHDŽ$POfDŽ$XOƄ$ZOHDŽ$pO/ HDŽ$xOfDŽ$OƄ$OHDŽ$OHDŽ$OfDŽ$OƄ$OHDŽ$O HDŽ$OfDŽ$OƄ$OH$OH H$OH(H$PH H$PH0H$(PH H$0PH8H$PPH H$XPH@H$xPH H$PHHH$PH= H$PHDŽ$O HDŽ$OfDŽ$OƄ$OHDŽ$PHDŽ$PfDŽ$ PƄ$"PHDŽ$8P HDŽ$@PfDŽ$HPƄ$JPHDŽ$`PHDŽ$hPfDŽ$pPƄ$rPHDŽ$PHDŽ$PfDŽ$PƄ$PHDŽ$PH$PHXH$PH?y H$PH`H$QHѷ H$ QHhH$@QH H$HQHpH$hQH H$pQHxH$PHHDŽ$PfDŽ$PƄ$PHDŽ$PHDŽ$PfDŽ$PƄ$PHDŽ$Q]HDŽ$QfDŽ$QƄ$QHDŽ$(QHDŽ$0QfDŽ$8QƄ$:QHDŽ$PQHDŽ$XQfDŽ$`QƄ$bQHDŽ$xQ HDŽ$QfDŽ$QƄ$QH$QH H$QHH$QHR H$QHH$QH, H$QHH$RH H$RHH$0RHD H$8RHH$XRH׿ H$`RHHDŽ$Q HDŽ$QfDŽ$QƄ$QHDŽ$Q HDŽ$QfDŽ$QƄ$QHDŽ$QHDŽ$QfDŽ$RƄ$RHDŽ$RHDŽ$ RfDŽ$(RƄ$*RHDŽ$@RHDŽ$HRfDŽ$PRƄ$RRHDŽ$hRH$RH H$RHH$RH H$RHH$RH H$RHH$RHʿ H$SHH$ SH H$(SHHDŽ$pRfDŽ$xRƄ$zRHDŽ$RHDŽ$RfDŽ$RƄ$RHDŽ$RHDŽ$RfDŽ$RƄ$RHDŽ$R HDŽ$RfDŽ$RƄ$RHDŽ$SHDŽ$SfDŽ$SƄ$SHDŽ$0SHDŽ$8SfDŽ$@SƄ$BSH$HSHH H$PSHH$pSH H$xSHH$SH H$SHH$SH޹ H$SHH$SHx H$SHH$TH H$THHDŽ$XS HDŽ$`SfDŽ$hSƄ$jSHDŽ$S HDŽ$SfDŽ$SƄ$SHDŽ$SHDŽ$SfDŽ$SƄ$SHDŽ$S HDŽ$SfDŽ$SƄ$SHDŽ$SHDŽ$TfDŽ$TƄ$ THDŽ$ TH$8TH H$@THH$`TH H$hTHH$THJ H$THH$THL H$TH H$TH= H$TH(HDŽ$(TfDŽ$0TƄ$2THDŽ$HT HDŽ$PTfDŽ$XTƄ$ZTHDŽ$pTHDŽ$xTfDŽ$TƄ$THDŽ$THDŽ$TfDŽ$TƄ$THDŽ$THDŽ$TfDŽ$TƄ$THDŽ$THDŽ$TfDŽ$TƄ$TH$UH H$UH0H$(UHr H$0UH8H$PUHĶ H$XUH@HHH$xUH H$UH$UHBH$UH H$UHBH$UHDŽ$UHDŽ$UfDŽ$ UƄ$"UHDŽ$8U HDŽ$@UfDŽ$HUƄ$JUHDŽ$`U HDŽ$hUfDŽ$pUƄ$rUHDŽ$UHDŽ$UfDŽ$UƄ$UHDŽ$UHDŽ$UfDŽ$UƄ$UHDŽ$U H$UHs H$UHBH$VHw H$ VHB H$@VH! H$HVHB(H$hVH< H$pVHB0H$VH H$VHDŽ$UfDŽ$UƄ$UHDŽ$VHDŽ$VfDŽ$VƄ$VHDŽ$(VHDŽ$0VfDŽ$8VƄ$:VHDŽ$PVHDŽ$XVfDŽ$`VƄ$bVHDŽ$xVHDŽ$VfDŽ$VƄ$VHDŽ$VHDŽ$VfDŽ$VƄ$VH$VHB@H$VH| H$VHBHH$WH H$WHBPH$0WHι H$8WHBXH$XWH H$`WHB`H$WHp H$WHBhH$VHDŽ$VHDŽ$VfDŽ$VƄ$VHDŽ$V HDŽ$VfDŽ$WƄ$WHDŽ$WHDŽ$ WfDŽ$(WƄ$*WHDŽ$@WHDŽ$HWfDŽ$PWƄ$RWHDŽ$hW HDŽ$pWfDŽ$xWƄ$zWHDŽ$W H$WH H$WHBpH$WH H$WH$XHH$ XHV H$(XHH$HXHh H$PXHHDŽ$WfDŽ$WƄ$WHDŽ$WHDŽ$WfDŽ$WƄ$WHDŽ$WHDŽ$WfDŽ$WƄ$WH$WHDŽ$XHDŽ$XfDŽ$XƄ$XHDŽ$0XHDŽ$8XfDŽ$@XƄ$BXHDŽ$XXHDŽ$`XfDŽ$hXƄ$jXH$pXH H$xXHH$XHd H$XH$XHH$XHԶ H$XHH$YH H$YHH$8YHʭ H$@YHHDŽ$XHDŽ$XfDŽ$XƄ$XHDŽ$XHDŽ$XfDŽ$XƄ$XH$XHDŽ$XHDŽ$XfDŽ$XƄ$XHDŽ$XHDŽ$YfDŽ$YƄ$ YHDŽ$ YHDŽ$(YfDŽ$0YƄ$2YHDŽ$HY H$`YH H$hYHH$YHq H$YHH$YH H$YHH$YHT H$YHH$ZH H$ZHHDŽ$PYfDŽ$XYƄ$ZYHDŽ$pYHDŽ$xYfDŽ$YƄ$YHDŽ$YHDŽ$YfDŽ$YƄ$YHDŽ$YHDŽ$YfDŽ$YƄ$YHDŽ$YHDŽ$YfDŽ$YƄ$YHDŽ$Z HDŽ$ZfDŽ$ ZƄ$"ZH$(ZH H$0ZHH$PZH H$XZHH$xZH H$ZHH$ZHk H$ZHH$ZHP H$ZHH$ZHe H$ZHHDŽ$8ZHDŽ$@ZfDŽ$HZƄ$JZHDŽ$`Z HDŽ$hZfDŽ$pZƄ$rZHDŽ$ZHDŽ$ZfDŽ$ZƄ$ZHDŽ$Z HDŽ$ZfDŽ$ZƄ$ZHDŽ$ZHDŽ$ZfDŽ$ZƄ$ZHDŽ$[H$[H H$ [H H$@[HX H$H[H(H$h[HJ H$p[H0H$[H H$[H8H$[H H$[H@HDŽ$[fDŽ$[Ƅ$[HDŽ$([HDŽ$0[fDŽ$8[Ƅ$:[HDŽ$P[ HDŽ$X[fDŽ$`[Ƅ$b[HDŽ$x[HDŽ$[fDŽ$[Ƅ$[HDŽ$[ HDŽ$[fDŽ$[Ƅ$[HDŽ$[ HDŽ$[fDŽ$[Ƅ$[H$[Hp H$[HHH$\H6 H$\HPH$0\H H$8\HXH$X\H H$`\H`H$\H` H$\HhH$\H= H$\HpHDŽ$[eHDŽ$[fDŽ$\Ƅ$\HDŽ$\HDŽ$ \fDŽ$(\Ƅ$*\HDŽ$@\HDŽ$H\fDŽ$P\Ƅ$R\HDŽ$h\HDŽ$p\fDŽ$x\Ƅ$z\HDŽ$\HDŽ$\fDŽ$\Ƅ$\HDŽ$\H$\HV H$\HxH$\H[ H$]HH$ ]Hž H$(]HH$H]HdU H$P]HH$p]H H$x]HHDŽ$\fDŽ$\Ƅ$\HDŽ$\HDŽ$\fDŽ$\Ƅ$\HDŽ$]HDŽ$]fDŽ$]Ƅ$]HDŽ$0]HDŽ$8]fDŽ$@]Ƅ$B]HDŽ$X]!HDŽ$`]fDŽ$h]Ƅ$j]HDŽ$]HDŽ$]fDŽ$]Ƅ$]H$]H H$]HH$]H2 H$]HH$]H H$]HH$^HV H$^HH$8^HT H$@^HH$`^Ha H$h^HHDŽ$]HDŽ$]fDŽ$]Ƅ$]HDŽ$]HDŽ$]fDŽ$]Ƅ$]HDŽ$]HDŽ$^fDŽ$^Ƅ$ ^HDŽ$ ^ HDŽ$(^fDŽ$0^Ƅ$2^HDŽ$H^HDŽ$P^fDŽ$X^Ƅ$Z^HDŽ$p^NH$^H H$^HH$^H H$^H$^HH$_Hʥ H$_HH$(_HЬ H$0_HH$^HHDŽ$x^fDŽ$^Ƅ$^HDŽ$^ HDŽ$^fDŽ$^Ƅ$^HDŽ$^HDŽ$^fDŽ$^Ƅ$^HDŽ$^HDŽ$^fDŽ$^Ƅ$^HDŽ$_ HDŽ$_fDŽ$ _Ƅ$"_HDŽ$8_HDŽ$@_fDŽ$H_Ƅ$J_H$P_Hr H$X_HH$x_H H$_HH$_Hm H$_HH$_HJ H$_HH$_H H$_HH$`H H$ `H HDŽ$`_HDŽ$h_fDŽ$p_Ƅ$r_HDŽ$_HDŽ$_fDŽ$_Ƅ$_HDŽ$_HDŽ$_fDŽ$_Ƅ$_HDŽ$_HDŽ$_fDŽ$_Ƅ$_HDŽ$` HDŽ$`fDŽ$`Ƅ$`HDŽ$(` H$@`HA H$H`H(H$h`H H$p`H0H$`H H$`H8H$`H7 H$`H@H$`H H$`HHHDŽ$0`fDŽ$8`Ƅ$:`HDŽ$P` HDŽ$X`fDŽ$``Ƅ$b`HDŽ$x`HDŽ$`fDŽ$`Ƅ$`HDŽ$`HDŽ$`fDŽ$`Ƅ$`HDŽ$`HDŽ$`fDŽ$`Ƅ$`HDŽ$`HDŽ$`fDŽ$aƄ$aH$aH H$aHPH$0aH H$8aHXH$XaHW H$`aH`H$aH H$aHhH$aHH H$aHpH$aH# H$aHxHDŽ$a HDŽ$ afDŽ$(aƄ$*aHDŽ$@ao HDŽ$HafDŽ$PaƄ$RaHDŽ$haHDŽ$pafDŽ$xaƄ$zaHDŽ$aHDŽ$afDŽ$aƄ$aHDŽ$aHDŽ$afDŽ$aƄ$aHDŽ$aH$aH H$bHH$ bHU H$(bHH$HbHU H$PbHH$pbHY H$xbHH$bH H$bHHDŽ$afDŽ$aƄ$aHDŽ$bHDŽ$bfDŽ$bƄ$bHDŽ$0bHDŽ$8bfDŽ$@bƄ$BbHDŽ$XbHDŽ$`bfDŽ$hbƄ$jbHDŽ$b&HDŽ$bfDŽ$bƄ$bHDŽ$bHDŽ$bfDŽ$bƄ$bH$bH H$bHH$bH} H$bHH$cHW H$cHH$8cHa H$@cHH$`cH H$hcHH$cH H$cHHDŽ$b HDŽ$bfDŽ$bƄ$bHDŽ$bHDŽ$cfDŽ$cƄ$ cHDŽ$ cHDŽ$(cfDŽ$0cƄ$2cHDŽ$HcHDŽ$PcfDŽ$XcƄ$ZcHDŽ$pcHDŽ$xcfDŽ$cƄ$cHDŽ$cH$cH H$cHH$cHϣ H$cHH$dH H$dHH$(dHW H$0dHH$PdH) H$XdHHDŽ$cfDŽ$cƄ$cHDŽ$cHDŽ$cfDŽ$cƄ$cHDŽ$cHDŽ$cfDŽ$cƄ$cHDŽ$dHDŽ$dfDŽ$ dƄ$"dHDŽ$8d HDŽ$@dfDŽ$HdƄ$JdHDŽ$`d HDŽ$hdfDŽ$pdƄ$rdH$xdH H$dHH$dH H$dHH$dH H$dHH$dH H$dHH$eH H$ eH H$@eH H$HeH(HDŽ$d HDŽ$dfDŽ$dƄ$dHDŽ$d HDŽ$dfDŽ$dƄ$dHDŽ$dHDŽ$dfDŽ$dƄ$dHDŽ$e HDŽ$efDŽ$eƄ$eHDŽ$(e HDŽ$0efDŽ$8eƄ$:eHDŽ$PeH$heH; H$peH0H8H$eH H$eH$eHBH$eH! H$eHBH$fHn H$fHBHDŽ$XefDŽ$`eƄ$beHDŽ$xeZ HDŽ$efDŽ$eƄ$eHDŽ$eHDŽ$efDŽ$eƄ$eH$eHDŽ$eHDŽ$efDŽ$eƄ$eHDŽ$e HDŽ$efDŽ$fƄ$fHDŽ$fHDŽ$ ffDŽ$(fƄ$*fH$0fH;w H$8fHB H$XfH H$`fHB(H$fH! H$fHB0H$fHv H$fHB8H$fH H$fHB@H$fH: H$gHBHHDŽ$@f HDŽ$HffDŽ$PfƄ$RfHDŽ$hf HDŽ$pffDŽ$xfƄ$zfHDŽ$fHDŽ$ffDŽ$fƄ$fHDŽ$fHDŽ$ffDŽ$fƄ$fHDŽ$fHDŽ$ffDŽ$fƄ$fHDŽ$gH$ gH۝ H$(gHBPH$HgH H$PgHBXH$pgHj HDŽ$gfDŽ$gƄ$gHDŽ$0gHDŽ$8gfDŽ$@gƄ$BgHDŽ$XgHDŽ$`gfDŽ$hgƄ$jgH$xgHDŽ$g HDŽ$gfDŽ$gƄ$gHDŽ$gHDŽ$gHDŽ$gHDŽ$gfDŽ$gƄ$gH+HteC C!H{Hst5{"t >HE0HSHHt 1>HE>HE H5HEH}HthIHu :HuHpq H5H86HMuH5LZ]A\AWAVAUATIUS1H(LPH{Ht HHcHcAH,;HHHHD$D|$ M9}KDH#HHuIM$HH;\$tH;u!IHL$HCHL$HHH9tHHu?Lct$ H5>KDHHI$HPHrp H81=H2Mv28H21H([]A\A]A^A_AWAVAUATIUSHH(LwHzp I9t H*ItLL/:IHuEL=7yHH@u1LMtHD$D$E1 D$E1H;HtBH8Ht:HIT$LH|$8H|$HH(7H|$Huy3|$MtHSHLAIHu:LL30LMH/p IVLH5iH81o;HH*n H9EuiH;]ucL}IHMuH2Ht$LH\$HD$IIu_L2UHHu2MtIuL2늺WHt$HH?)D$}HMIu Hl2E1H(L[]A\A]A^A_AUATUSHH(HPHH HqH9~pHDu%HPHm H5kAH81E:Hu3H t)HHHm H5_AHSH81 :HH= 5HHuH= ;HHt%H5Ĭ HIHuHMuHf1ABH;m AL;%Pm EuL;%m t L7AI $uL1E~#H5 HHHtHu0 AuHH3HAEHT$Ht$H|$8H5 H#HHu Au%Ht Hu0HT$Ht$H|$.@H|$Ht HuU0H|$Ht HuA0H|$Ht Hu-0AHMuH0H(D[]A\A]ATIUQH5 HHu3E1Ht'LHC3AąxHMuH/DZ]A\AWAVIAUATUSHH5 5H-Bl HuH5 H~5HHu%H5 HHE1\5H9qH5R LH$H]H9H5 H5HHMH5 LҔHH<H9uH5 LIHu%`H5ѯ HAŅuE11E19IH5 Ho6IH5 2AŅyH9Z3HE1H5 LoHHB1H5 LOIHt6IH5ѯ H5xbIH5 Z2AŅyFHtA2Hu7L2\H$E11E11E1E11E11E1E112HuH2i IVH5H815AHt H uHo-H<$u +E11E1E1H$H $HHD$HHuH;-Mt IuL)-HtHMuH-Mt/I $u)L-H5 HE1HD[]A\A]A^A_AWAVAUATUSH(H H$HD$HD$HD$HD$ HD$(Ht)1H9-Hh H5=H8m-HH=s 4Ho H{-HH={+HtHHP Hm-H=`+HtHH4 Hb-H H= H5=+Y-5A11IHc1A4 AHD^A w k D0HH@.u HAJAuHH5 u1/H Hu{,HHl$XHVHHA L ~PHRH?P1g-H 1H*yEL-A1-1H=i*H H{,1H=h+3H Hv,H=*HHHL-n .L+HtLhLH)IHt^IL$Htn H@ u He LH5H81l2麊H9tnHe LH5H81G2镊Hf H8+t>z-H=m ,x)Hm LHx)xHm Hm LHMu.H)$ML-#A1HҘ ,HƘ HQ+:ydL-A1+WC,H Ht *,H Htn ,H Ht +H Htt +Hح Hk1+Hɭ HT+H H:+H H +H H+H H2v+Ho H\+H] H75*B+HK H1 (+H9 H11H=_1H! HdH*H HK=Ȍ ua(HH):H H55 H= 9,yϽkAL-)H5H,HtH= yHtI6HC H5nH %yӽqAL-)H=- 0HuvAL-bj)H= Hl HtH=8 HL HtH=H H, HtH=К H HtH= H HhH=\ HȰ HLH= kH H0H= OH HH=( 3H\ HH= H8 HH=Ȟ HH=c H HH=_ Hۯ HH=3 H Hst)Hݪ HuxAL- 'H} H-na HHl HHH HPH[-H| HtH 0 H 1H5 .H_ HvH5w 1k.HD HSH5\ 1H.H) H0H5a 1%.H H H5Θ 1.H HH{ H5, 1-Hѩ HH5q 1-H HH5F 1-H HzH5C 1o-H HWH5 1L-He H4H5 1)-HJ HH5 1-H/ HH5 1,H HH5 1,H HH5ɠ 1,Hި HH5 1z,Hè HbHHH1U,H H=H5 12,H HH5Ü 1,Hp HH5 1+HU HH5 1+H: HH5 1+H HH5 1+H HkH5< 1`+H HHH5 1=+HΧ H%H5^ 1+H HH5 1*H HH5 1*H} HH5 1*Hb HH5 1*HG HvH5 1k*H, HSH$ H5 1A*H H)H5b 1*H HH5 1)HԦ HH5 1)H HH5 1)H HH5n 1)H HzH5Ô 1o)Hh HWH58 1L)HM H4H5E 1))H2 HH5 1)H HH5 1(H HH5 1(H HH5 1(Hƥ HHZ H5ǣ 1s(H H[H5 1P(H H8H5 1-(Hn HH5n 1H(HP HH5 1'H5 HH5 1'H HH5 1'H HH5 1{'H HcH5| 1X'Hɤ H@H51 15'H HH5 1'H HL L 1H H H5 &H\ HAE11H$ H % Qj5d 5 RRPRR1Q&HPH HhH5A 1]&H HEAE11H H Qh5s 5E RRPRR1Q&HPH HH H5 1%Hv HAE11H. H / Qh5 5Ś RRPRR1Q%HPH HoH H5A 1]%H HEAE11H H Qh5K 5E RRPRR1Q%HPH HH  H 1H5 $H HAE11H' H ( Qh5 5 RRPRR1Q$HPH HhPH X 15S H L ݝ Lޙ H5 :$ZYH H AE11H H Qh-5ޚ 5 RRPRR1Q#HPH HL H 1HF H5 #Hc HAE11H H Qhl5H 5 RRPRR1Qh#HPH H H5 HH HAE11H H Qh5 5 RRPRR1Q&YHPH H-HQ LL1Lg IH HSL b 15} L H o 5q Hj 5d H5 5_ 5 5 5 H@H HAE11H H Qh5 5 RRPRR1Q bHPH H6Hg L1H5F !H* H L  L 1H H H5 H HAE11H3 H 4 Qh\5X 5ʒ RRPRR1QHPH HtL H & 1H H51 THm HHPH HH C H 1H5֏ HZ HAE11HJ} H K} Qh5 5 RRPRR1QHPHd HAE11H| H| RhY54 5 PP5 PPR1\HPH H0AE11H| H| Rh5q 5+ PP5c PPR1HPH HAE11H>| H?| Rh 5 5Ћ PP5 PPR1HPHk HzAE11H{ H{ Rhv 5Æ 5u PP5e PPR1KHPH HAE11H{ H{ Rh 5` 5 PP5 PPR1HPHŕ HL H ލ 1H H5 H HAE11Hz H z Qh@ 5 5 RRPRR1QbHPH? H6AE11Hz Hz Rh 5 51 PP5ђ PPR1HPH HL H 1H H5 H, HAE11H z H z Qh 5) 5 RRPRR1QyHPHf HMAQL̋ 15ω L h H 5 H, 5n H5 5 5 5Ń 5g H@Ho HAE11HGy H Hy Qh: 5 5ވ RRPRR1Q HPH HAPL o 15: L H  5& H 5 H5* 5D 56 5 5 5 5& )HPH H AE11Hvx H wx Qh 5 5 RRPRR1QHPH H5 L  1 LԊ 5^ H G 5Q H: 5L H5U 5_ 5A lH0H HPAE11Hw H w Qh; 5> 5P RRPRR1Q &HPH+ HH + H܃ 1H5 Hr HAE11H2w H 3w Qh 5 5Ɇ RRPRR1QHPH HsAE11Hv Hv Rh 5\ 5n PP5 PPR1DHPHY HH I H† 1H5܈ H HAE11HPv H Qv Qhc 5 5 RRPRR1QHPHڐ H5ӂ L 1 L6 5 H i 5 H 5օ H5/ 5 5 5 57z :H@H׎ HAE11Hu H u Qh 5 5 RRPRR1Q HPH HAE11H1u H2u Rh55) 5Ä PP53 PPR1HPHƏ Hm5 L | 1L 5ԅ H u} 5' H0 5| 5<~ 5 5І 5 5t 5 5~ 5 5, 5 H5φ HpH HAE11H?t H @t Qh5T 5փ RRPRRQHPHގ H}HA H 1H) HaH HIW15 55 5LJ 5y 5 5e 5 5i 5[ 5 5? 5 5[ 55 5߃ 5 L :| 5 L 5G H P 5~ Hk H5 HĠHa HAE11Hr H r Qh{5 5 RRPRR1Qf HPH H:VL b 15 LV H ׁ 5 Hz 5\~ H5݄ 5_ 5y 5 5 5z 5 5Á 5 H`H HAE11Hr H r Qhr5" 5 RRPRR1Q HPHό H^H H޿1P H H85z L 1L} 5 H H 5j Hx 5M} 5w 5i 5x 5x 5'z 5x 5C 5w 5} 5| H5 HpH HAE11H q H q QhK5/z 5 RRPRR1Qw HPHċ HK5z L w 1 LЀ 5 H w 5̈́ H 5| H5 5#x 5| 5w 5w H@Hɉ HAE11HAp H Bp Qh5ƀ 5 RRPRRQ HPH H5w L :| 1 L,{ 5w H w 5I H: 5{ H5 5? 5} 4 H0H HAE11Ho H o Qh5 5 RRPRR1Q HPHK HH5 1 H HPH Gv 15ځ Hs L Tz Lu H5N q ZYH` HWAE11Hn H n Qh?55 5W~ RRPRR1Q- HPH HH5Ҁ 1H HAE11HGn H Hn Qh5w 5} RRPRR1QHPH! H6L-MA1M8L-4A149L-A1:L-A1IL-A1JL-A1KL-A1ML-A1oAL-zH=T HH H H H؈ HɈ H H=m A]Hm H5`n H= D}AL-H|$Ht HuAH|$ Ht Hu-H|$(Ht HuH=9 tFH=7l ttLDH=HH= Ht7H Hu' HuH9 H5H81H=Lj O]Hk H=O H H9<Hk H=l H5w H=hl H=Tl H=@l mH=M H=-l H=l >Hj H޻H HfHnHfHnHZH=G flfHnHH=k )cj fHnHG8fHnflH7])Pj fHnH4fHnfl)Dj fHnfl)Dj H5H H=Qk tH==k ]H=)k FH}i HFH5 HH fHnHd fHnH\H=D Hpi Hj flH=j HE @i .H5 H=j H=j H=uj H=LHHu~AL-ApHH H5;' HHi HtYHMuHH=HHtA HHlH5 Hh H!YHMuHvH=HH:A HHH5} Hh HXHMuHH=3HHA HH H5& H_h HsXAH HHlH5_H6h HBXA0HHDH5.H h HXAPHHH5Hg HWAHHH5bHg HWAHHH51Hg H~WAHHH5jHig HMWAHHrH59H@g HWAHH?H5Hg HVAHHH5mHf HVAHHH5<Hf HVAHHH5u Hf HXVAHHH5DHsf H'VAHH{H5HJf HUAHHTH5xH!f HUHMuHH=).HHA`HHH5!He HnUA@HHH5He H=UH~H(UAHHH5Hke HTHMuHLH=`HH$BH Hր HH5TH lH HH5bTH eH| HH5]THMuHH=HHuAL-*2H Hq HH5'TH kHD HH5fTH FH HH5ATH !H HH5TH H HH5SH H HH5nSH Hc HH5nISH H6 HH5U$SH hH  HH5<cSHMuH,H=t@HHqH uH~ HH5SH Hq~ HH5RH HD~ HH5jRH H~ HH5ERH H} HH5 RH H} HH5_RH H} HH5:RH Hc} HH5yRH H6} HH5YQH H } HH5;gQH H| HH5'BQHMuHo Ll$Lt$IHLLLHŁH={ H5Ox 1 WHD$HHQH5pu VHD$ HDH|$HuH5x H|$ HD$wHD$HH|$ HuHD$ H|$H;=-- @H;=, @uH;=, tnŅH|$HueHD$H=z 1҅H5lw /VHD$HHH5e UHD$ HH|$HuH5d H|$ HD$UHD$H]H|$ HuH={ HD$HD$ HHz uHD$uH5v UHD$HH H5!d DUHD$ HH|$HuWH=z HD$ HD$HHxz u1HD$ H<$Ht HuH|$H$Ht HuHD$H|$Ht HuHD$AdfAdYAdLAd?Ae2Ae%AeAg AgH|$Ht HuGHD$H|$ Ht Hu*H \DHD$ H=9HL$(HT$HHt$ _y6HHL$L-HT$H4$Ah}cH* H=x HHHx uH|$ Ht HuHD$ H|$Ht HueHD$H|$(Ht HuHHHL$HD$(HT$H4$}LLLHH}H5d H=:x RHD$(HHH\ H5d HH|$(HuHD$(H=\ NH5gg H=w [RHD$(HHH\ H5H>5>Hi 0HD$HH-HN H5!^ H-H|$HuHD$H=M yHN L f LL H \ H=A 4HD$HH-HM H5W HAv-H|$HuZHD$H=ZM H6N L f L[L H \ H=MA HD$HH+-HM H5^ H -H|$HuHD$H=L qHM L e LK H [ H=@ ,HD$HH,HL H5m] H9,H|$HuRHD$H=RL H>O L 'e LSK H [ H=@ HD$HH,HL H5^ Ht,H|$HuHD$H=K iHJ H I H9Hu)HI Ht HH=I .H=Y ѫHH=Y HvI H5wI BHH|$H+H5T AHD$(H+H|$Hu(HD$(H I HD$HD$(Hs` H,J H9Hu)HH Ht HH=H .H=OY "HH=>Y HH H5H 蓭HH|$(H~+H5;T f@HD$H{+H|$(HuyHD$(HD$(Hb+H- HT$H=> HD$L`I HhHP Hh(L c H Y HL HEHD$H+HT$(HHH|$(HuHI HT$HD$(H5mZ H*H|$HuHD$H=I 5L b LH H [X HlJ H= = HD$H*H` HHHBI HT$H5O Hx*H|$HuHD$H=I L a LH H W H5J H=V< YHD$H0*HT` HHHH HT$H5Q HS*H|$HulHD$H=lH HG H 9F H9Hu)H$F Ht HH=F .H=V oHH=V HE H5E HH|$H)H5Q =HD$(H)H|$HuHD$(H E HD$HD$(H] HF H9Hu)HeE Ht HH=VE .H=U HH=U H5E H56E 1HH|$(H)H5P =HD$H)H|$(HuHD$(4HD$(H(HT$HhH=Q: HEHP H[ HH[ HD$(LE HD$HEHP(Hh0L _ H U HI %HD$H(HT$(HHH|$(HuaHjF HT$HD$(H5X H f(H|$Hu"HD$H="F H6E H C H9Hu)HC Ht HH=C .H=RT %HH=AT HC H5C 薨HH|$H'H5P i;HD$(H'H|$Hu|HD$(H 0C HD$HD$(HZ HD H9Hu)HB Ht HH=B .H=S vHH=S HB H5B HH|$(Hp'H5O :HD$Hm'H|$(HuHD$(HD$(HT'HT$H- H=7 HD$LC HP(H fHnHEHHP0@L y] H BS HF HD$H&HT$(HHH|$(HuH#D HT$HD$(H5N H&H|$HuHD$H=C vHD L \ LB H R H=6 1HD$HHu&HC H5rJ H>j&H|$HuWHD$H=WC L k\ LdB H R HiD H=*6 HD$H"&HZ HHHB HT$H5;J H&H|$HuHD$H=B [L [ LA H Q HF H=s5 HD$H%HIZ HHHhB HT$H5 Ht HH=> .H=O }HH=O H> H5> HH|$(H$H5J 6HD$H$H|$(HuHD$(HD$(H$HT$HhH=n3 Hh(L? HP L Y H qO HC HD$HEHD$HC$HT$(HHH|$(Hu;HD@ HT$HD$(H5R H $H|$HuHD$H=? L (Y L ? H N H>B H=o2 RHD$H#HW HHH? HT$H5M HL#H|$HueHD$H=e? Hy> H < H9Hu)H< Ht HH=< .H=M hHH=M H< H5< ١HH|$H.#H5H 4HD$(H+#H|$HuHD$(H 3< HD$HD$(H*T H= H9Hu)H; Ht HH=; .H=L 蹞HH=L H; H5; *HH|$(H"H5G 3HD$H"H|$(HuHD$(-HD$(H"HH HL$H=g0 HD$L< HPHH HP(L W HH L H@ 5HD$HH"HT$(HHH|$(HuqHz= HT$HD$(H5O H"H|$Hu2HD$H=2= L nV L?< H K H> H=e/ HD$H!HT HHH< HT$H5F H!H|$HuHD$H=< 6L U L; H \K H= H=. HD$H`!HS HHHC< HT$H5E H?!H|$HuHD$H=< L PU L; H J H6> H=- ZHD$H HES HHH; HT$H5I HT H|$HumHD$H=m; L T Lz: H .J Ho< H=@- HD$H HR HHH; HT$H5AB Hm H|$HuHD$H=: qL 2T L9 H I H< H=, ,HD$H% HR HHH~: HT$H5H H& H|$Hu?HD$H=?: L S LL9 H I H!= H=+ HD$HHQ HHH9 HT$H5L HH|$HuHD$H=9 CL S L8 H iH H< H=+ HD$HSHP HHHP9 HT$H5K H2H|$HuHD$H=9 L R L8 H G Hc< H=d* gHD$HHRP HHH8 HT$H5M HaH|$HuzHD$H=z8 L Q L7 H ;G H: H=) HD$HHO HHH"8 HT$H5G H`H|$HuHD$H=7 ~L gQ L6 H F HU; H=( 9HD$HH$O HHH7 HT$H5L H3H|$HuLHD$H=L7 L P LY6 H F H9 H=?( HD$HHN HHH6 HT$H5G HH|$HuHD$H=6 PL IP L5 H vE HW8 H=' HD$HFH>N HHH]6 HT$H5 B H%H|$HuHD$H=6 L O L+5 H D H7 H=& tHD$HHM HHH5 HT$H5? HnH|$HuHD$H=5 "L +O L4 H HD H97 H=& HD$HtHM HHH/5 HT$H5KA HSH|$HuHD$H=4 L N L3 H C H6 H=c% FHD$H HyL HHH4 HT$H5@ H@H|$HuYHD$H=Y4 L N Lf3 H C H 7 H=$ HD$HHK HHH4 HT$H5D HH|$HuHD$H=3 ]L ~M L2 H B H$7 H=# HD$H9HK HHHj3 HT$H5G HH|$Hu+HD$H=+3 L L L82 H A H]6 H=># HD$HHlJ HHH2 HT$H5WF H{H|$HuHD$H=2 /L `L L1 H UA Hv3 H=" HD$HgHI HHH<2 HT$H58 HFH|$HuHD$H=1 L K L 1 H @ H4 H=! SHD$HH>I HHH1 HT$H5i? HMH|$HufHD$H=f1 L BK Ls0 H '@ H3 H=! HD$HHH HHH1 HT$H5A HtH|$HuHD$H=0 jL J L/ H ? HQ4 H=b %HD$H,HH HHHw0 HT$H5;E H H|$Hu8HD$H=80 L $J LE/ H > H1 H= HD$HHyG HHH/ HT$H59 HH|$Hu衿HD$H=/ H#1 H= HD$HZHF HHHI/ HT$H59 H9H|$Hu HD$H= / L I L. H = H0 H== `HD$HHKF HHH. HT$H5: HZH|$HusHD$H=s. HD$HHHqA H52; L FH LO- H=c H < H=0 HD$(HHsF HHHD$HT$(HHH|$Hu辽H- HT$(HD$H5; Hf8H|$(HuHD$(H=- L G L, H @< Ha/ H=r HD$(HHD HHH'- HT$(H5[: HH|$(HuHD$(H=, L F L+ H ; H. H= >HD$(HH1E HHH, HT$(H59 H8fH|$(HuQHD$(H=Q, L mF L^+ H ; Hs- H= HD$(HHC HHH+ HT$(H5]4 HH|$(Hu躻HD$(H=+ U@HD$(HHL% H51 LIH5: H|$(L-L E Lw* H=  H $: H- HD$HHT$(HHH|$(HuH+ HT$HD$(H5: HsH|$Hu轺HD$H=* XL D L) H ~9 H- H=0 HD$H+H&C HHHe* HT$H5!< H  H|$Hu&HD$H=&* L ZD L3) H 8 H, H=y |HD$HHB HHH) HT$H59 HvH|$Hu菹HD$H=) *L C 1L( H S8 H1 H= HD$H\H@ HHHT$H5U1 H=N( BH|$HuHD$-HD$HH&H; H5+ "Ht9 H5+ H|${HL/ H5) H|$[H1 H5) H|$;H: H5+ H|$HD3 H5* H|$H/ H5E) H|$ۿH\/ H5E) H|$軿H; H5U+ H|$蛿HD: H5+ H|${H6 H5* H|$[H9 H5* H|$;HT1 H5( H|$H0 H5( H|$Ht5 H5) H|$۾HL. H55( H|$軾H$5 H55) H|$蛾H9 H5) H|${H49 H5) H|$[H: H5* H|$;wH6 H5( H|$nH: H5) H|$eH\6 H5( H|$۽\H1 H5' H|$軽SH$0 H5' H|$蛽JH1 H5' H|${AH1 H5' H|$[8Hd6 H5e( H|$;/H9 H5( H|$&H8 H5( H|$H+ H55& H|$ۼH2 H5E' H|$軼 H4 H5' H|$蛼H9 H5u( H|${H. H55& H|$[H/ H55& H|$;H0 H5e& H|$H1 H5u& H|$Ht1 H55& H|$ۻHd1 H5%& H|$軻Hd, H55% H|$蛻H3 H5e& H|${H|5 H5& H|$[HT3 H5& H|$;H$ H5+ H|$HT$H56 H=`" H|$HEgAL-韵sA5L-郵A6L-gA7L-ޙKA:L-™/A;L-AL-AL-n۴AL-鿴AL-飴AL-釴AL-ckAL-GOAL-+3AL-AL-A L-ט߳A L-óAL-駳AL-鋳AL-goAL-KSAL-/7AL-AL-AL-ۗL-ʗA̲L-A鵲L-A鞲 L-A釲L-nApL-WAY!L-@AB#L-)A+.L-A0L-A;L-A-=L-͖A-ϱCL-A-鸱EL-A-顱HL-A-銱SL-qA-sWL-ZA-\bL-CAlEeL-,Al.pL-AsL-A~L-A L-ЕA ҰL-A 黰L-A 餰L-A 鍰L-tA vL-]A _L-FACHL-/AC1L-ACL-ACL-ACL-ӔACկL-AC龯L-A駯L-A鐯L-wAyL-`AbL-IAKL-2A4L-A\L-A\L-A\L-֓A\خL-A\L-A\骮L-A\铮"L-zA|%L-cAe0L-LA N2L-5A 78L-A  :L-A  =L-A HL-ْA ۭLL-’A ĭWL-Ai魭ZL-Ai閭eL-}AhL-fAhsL-OAQvL-8A:L-!Al#L- Al L-AL-ܑAެL-őA ǬL-A 鰬L-AO陬L-AO邬L-iAkL-RATL-;A=L-$A&L- AYL-AYL-ߐAL-ȐAʫL-A 鳫L-A 霫L-Av 酫L-lAv n L-UA WL->A @L-'A@ )L-A@ )L-A ,L-A 7L-ˏA ͪ:L-A 鶪EL-A: 韪HL-A: 鈪SL-oA qVL-XA ZaL-AA; CdL-*A; ,oL-A rL-A }L-A L-ΎA ЩL-Ac 鹩L-Ac 颩L-A 鋩L-rA tL-[A5]L-DA5FL--A/L-AL-AL-AL-эA{ӨL-A{鼨L-Ar饨L-Ar鎨L-uAKwL-^AK`L-GAIL-0A2L-AL-AL-AL-ԌA֧L-A鿧L-A?騧L-A?鑧!L-xAz$L-aAcA,L-DLA.L--5A/L-A0L-A1L-A2L-ы٦A3L-¦A4L-髦A5L-锦A6L-u}A7L-^fA8L-GOA9L-08A:L-!A;L- A<L-A=L-ԊܥA>L-ťA?L-鮥A@L-闥AAL-x逥ABL-aiACL-JRADL-3;AEL-$AFL- AGL-AHL-׉ߤAIL-ȤAJL-鱤AKL-隤ALL-{郤AML-dlANL-MUAOL-6>APL-'AQL-ARL-ASL-ڈATL-ÈˣAUL-鴣AVL-靣AWL-~醣AXL-goAYL-PXAZL-9AA[L-"*}AL-HMu$HA~EL-܇~AL-ȢHMu$HAL-鞢AL-z邢HMu$HA蹟L-PXAL-4HfH}HtHEH/tHEH]H@fD軗uHUHH9B0uH螓t]ATIHUHΓHtIHID$LHH@pPHmItHL]A\H萐HL]A\DE1ff.UHSHHt:HHH}H/tH]H1[]@;H]H1[]fDH ff.@UHGHHunHH}HtHEH/t?HHtHDžH/tHEH]H@諏f蛏f;uHUHlH9B0tHd]Ht3HLGXHwXMtI(t1ÐHL41HDH5 ff.@Hi LGHHGMtI(t 1HL܎1HDUSHHH- HHEHkHHEHt H/tAHEHHHHEHtH/t H1[]kH1[]f[fAUfIATIUHSHH(HGXHT$Ht$HD$HG`GXHD$HGhHGhH|$HD$KH{XHt$Ht H|$HD$HtHHD$HtHHD$Ht HHD$HT$IUI$HD$HEHH8L`HHT$HhHPHT$HPHtH/t=MtI,$tAHtHmtH(1[]A\A]H(fDfLfDH|$IEI$HEHtH/t8H|$HtH/tHH|$HtH/t(H([]A\A]蛌f苌f{fATfHnfHnUflHLGXLg`GXHohHOhMtI(tLMtI,$t0HtHmt H]A\@HH]A\ fLfDLfDAUIATIUSHiHtTH5 HLALH蹑HmItHL[]A\A]ÐH舋HL[]A\A]f.HE1[L]A\A]ff.@ATUSHHpHtHCpH/~H{ HtHC H/SH{@HtHC@H/(H{HHtHCHH/H{PHtHCPH/H{XHtHCXH/H{`HtHC`H/|H{hHtHChH/QH{8HC8Ht H/&HHtHǃH/HHtHǃH/HHtHǃH/HHtHǃH/tfLcxMtQ~71H9~ILkxMt3~)E1@K|HtLՅuID91[]A\A]A^H9t+HXHt/HJH~F1 fHH9t7H9tuf.HH9tHu1H;5 f1ff.fHLGH?t%HuhHHu6I@H6HfHtkHH>HHDH HIH52H81"1HHytHr IH52H81@HQ IH5jH81ՌHysSHGXHHtHHCX[fHGHxHt辋HCXHu[H H[AUAATUSHH9H+ H9GHIH9F A|$ HUI9T$HEIL$H9@H@t Hu ED$ D8@ !H}HA cIL$0It$HA@HEȃU\DA9uBHHd1Au&1@HQ H9ut1AH[]A\A]@I9uuHDLYHHH;. H;- uH9u8HmuHD$ zD$ @1AH[]A\A]@H@fDHM0H}H@HE@L:fL5fDIt$HfDD@Dff.AWAVIAUATIUHSHhLG0MtHwHhHL[]A\A]A^A_HVL߆IHL1IHMLLHHImItBHhL[]A\A]A^A_L~HvHu;HhLH1[]A\A]A^A_Af.L؀fDE1HBHD$HtJ<8LD$HIH$MLD$tWIF I9IGHL1HHAoDADHH9uLHAt ITITH|$LD$\LD$HHD$KD1AL|$ HHD$HL$PLHD$XH|$HLl$0IHl$8IHIHD$HLD$(EHD$PHL$HPH#HHD$XHHD$PJDHL$HD$XJILHLLQuL|$ LD$(ILl$0Hl$8HHL$LLHAIH\$HHD$ HHtzH\$H~YLd$1 HH9tGIHOHt1Hx H1Hf.H; toUHhlHHH;= H;- u4H;- t+HqHmtDH]fD1fDf1H*f.GE@HD$ HHA`@HH IH5HPH81s1HfH?IIHwHуt LWL_8HFLLLfHtMHIfDHH HH5OH81r1HfHLGH?tHuXHHu'I@1HHtcHu~H>HDH HIH5H81"r1HHytHr IH5H81q@HQ IH5OH81qHywATIHUH^lHtIHID$LHH@pPHmItHL]A\H iHL]A\DE1ff.LVIIM1fHI9tM9Duf.1fDITHBtv@tmL9tIXHt,HqH~S1HH9t?H;TufDLDHH9xHuH; ffDHI9k1UHH HGHHrHT$Ht$H|$ZoHEHPHUHH;0 HB8HDžHDžHEHH|$HT$HEHt$eHpHtHDžpH/tH3hH H]FfD;gfHDžm HUHH9B0HiH ]u@HHtHDžH/tHEH$@fHEHpfFH=1ATIUHSHHHt HӅuQH} Ht LӅu?H}(Ht LӅu-H}HHt LӅuHp1Ht LH[]A\[]A\ff.HHt HSHHHt8Ht/HPHHHP HHH(tHH[H HefDHHtGHH9t.HXHtRHJH~q1DHH9t_H;tuHfDH1 H5JH8*f1HHDHH9tHuH;5 tfDH HNH5~HWH81m1@AWMAVMAUATUSH8HH$H$HHt$HT$$H$HDŽ$q$HDMMHD$$H@H$ HD$H@H$(H$HDŽ$H$HHD$$H@H$(HD$H@H$H$HDŽ$H$H6HD$$H@H$HD$H@H$H$HD$pH$HLMIHD$$H@ HD$HHD$H@ HD$P_H$HD$0HT$@H1MMHD$$H@(HD$XHD$H@(HD$`H|$@MHD$xH|$HHD$$Lh0HD$L`0WLT$E1MhLLMMHD$$H@8HD$ HD$Lh8Hl$(HD$8MMILHD$$ H@@HD$hHD$L`@MHD$L$E1L$HPHHD$H$L$MIHpHHD$(H$LL$HIċ$LIMLHILd$hL9$uMIL$L$H$L$H$HD$8HD$8HT$ HT$(H9LMHLI9HD$xHt$XHD$xHt$H9D$`GMHD$0HT$HHD$0HT$@H9D$PMMHD$pH$HD$pH$H9$]LMIH$H$(H$H$H9$H$H$ H$H$H9$FH$H$H$H$H9$H8[]A\A]A^A_@MHL$(E1LHLIL$L$L$6dHL$hL$L$L$HM9uB@MYHE1fHLLLT$8L\$(IcHL$ L\$(LT$8HM9uMHL$1HLLHcHLI9uIHHL$@Hl$X1fDHLLHNcHHI9uIHH$Hl$H1HLLHcHHI9uH$H$H$1HLLHbHHH9$uH$H$1HLLHbH$(HH9$uH$H$1HLLHIbH$ HH9$urH$H1HLLH bH$HH9$uaff.@HG@t~HFHtt@tkH9t.HXHt*HJH~A1DHH9t/H;tufHH9tHu1H;5 f1D]t@AWAVAUIATUHSHHGHHtIMt"HL[]A\A]A^A_{eIMuHQ H8a^uH6 LH5BH81d_H_HHtcHHtH5? HdIHteLHdIHtjH_I/Ht#I.t'Hmt*HpI3DL[L[H[Hm:H[-1fDUSHHH- HHEHkHHEHtH/HEH{ HHk HEHtH/HEH{(HHk(HEHt H/H{HHtHCHH/tpHpHEHpHtH/tBHH9tHtP8Hǃ~gHǃH1[]{ZfkZf[Z_fDKZ,fD;ZfDu'HHtHǃH/u Z{rH=1!HWD_@GDHtWH H1LH9t)HRLIHLGL ?;L ?/L ?#L j?L > L [>L >L >L >L >L >L >L >L >H T>H ]>H >H h>H >H =}EH =HO>HDcEH i>Hr>HDIEH +>H>HD/H =#H =H = H 5>H e=H =H =H Q=H =H =GDE1qAWAVAUATUHSHHWH H HyATUHSHHFHHW@@HXHt;HJH~{1fDHH9thH;luH[]A\f.HH9tHu1H;-v ΐE1JtH9tH|$IuIH|$L9uH1[]A\@HH[]A\xLH^H~1 HH9tH;|uSf1ff.fIHWH5 H9LZ L9LXMtZMZM~ 1fILH9L9t}HI9u1tHB8HHt LfLPHHH9t4HuH 8 H9t#HHL9tHuI9uf.HOA}ATE1UI)SHY uLgH=IuLHI{OMt L[]A\E1NIHuH H5~H8J@AWAVAUATUSH8HH$H$ HHIIAHDŽ$H$(A$AIAH$HzHDŽ$ICH$H$H$AIAH$HHDŽ$ICH$H$H$ABIAH$HHDŽ$ICH$H$H$AIA H$HHD$HIC H$H$HD$`LMIAIC(HD$PHIA(D|$MMHD$HD$XHD$`HD$(|$|IG0HD$H3IF0Hl$(1EHD$ L|$ M_8MHH8L\$@IIHD$0HL$8HHH̓|$Mw@M|$ H]@'LHUHIwHE1ɋ$EL$L$H$HT$xHt$pH|$hkH|$hHt$pL$HT$xHH$L$IM9uHD$0Ld$8Ht$0H9t$@GHLHHHl$ HH9\$IEHD$H\$XHD$H\$(H9D$PMD|$MHD$HH$HD$HH\$`H9$LMIH$H$H$H$H9$H$H$H$H$H9$$H$H$H$H$H9$H$H$(H$H$H9$ 8H8[]A\A]A^A_I<$HEHHsLT$pHD$h|EHD$hLT$pUDL1Eu^H9H/tDHHL9(H9H/uL$HD$xHL$pHT$hEHD$xHL$pL$HT$hfH1HHHI9uH}HEulHHHD$0DHD$0HH@HD$(H8HEu}HHDD$yDDD$HHkHD$`H8HEHHDD$LL$L\$'DL\$LL$DD$gHH0H$H8HEHHfDD$L\$LL$CLL$L\$DD$>HHH$H8HEHH=DD$L\$LL$wCLL$L\$DD$HHH$H8HEuAHHDD$L\$LL$#CLL$L\$DD$HHHHH$H8HEu5HHDD$L\$LL$BLL$L\$DD$HHUHH HGHHT$Ht$H|$IHE`HEHH}H}81EHmH|$HT$Ht$@H}PHtHEPH/tAH}XHtHEXH/tHEHH@H ]DAfAfUhkH}H^Elu?MM0HU@E1Hu8H}@u'HH9P0HDH ]GHEff.fAWAVAUATUSHLoMzHIH1HI9tH9\uIH[]A\A]A^A_DHC0E1HD$@NdI9H} H9CI9D${ A|$ HSI;T$ID$HsH9@H@t HDK A|$ Dȉ@@8uA ]LKH@ jIt$0IH@IDA9DA9u7HLL$E1HCL$AIM91H[]A\A]A^A_f.L5{ L9uuM9uuLHL$?IHtH;{ L$L;%>{ uM9u:I,$DtIEnErKH[]A\A]A^A_f.LL$DI,$L$AuLL$>L$@A@HsHHEt$I@ It$HHL$|렐H@`HtmHHtaHHtWH:z H9Eu'@H(HmIYHB=LHH5@)NHHuI)BHuHx H5$H8 >HGt{HGHPHvHtOHt1A@HtHcWHHcHHE@GWHH f.GWHH HUHH@`HtvHHtjHHt`H y H9EuH8Hmt)H]HH5(,HHuHHHD$;HD$@HuHw H5"H8f1fnFHH H=ID$HH@HHLHxHHCHGHq H87v9HCATUHHHGHLeID$Hv-ItoItYH!:IHmt1HL]A\@MtHcEIHcHEHmIuH4HL]A\DeEII DeEII IDH@`Ht_HHtSHHtIH@H;>q 'HH5k yHHuCI>DHI"9HuHo H5/H8 5H@DAUH?IATUHSHHwHHt8HF8HDHHH1L[]A\A]DL I9H=p H9LXM MQM~1DILI9RH9IHI9ucHH1L[]A\A]8Ly I9H=Qp H9LXMpMQM~'1DILI9H9HI9utHF8HDHLL-ߡ MH=b1~1LHAI7MHL[]A\A]HDHI9tHG@HFdMLL9H9AD M9AL9AE D!DOAADHH)HH=o NoVPAotjobf oin`AoptFoz ~0oy ~pAo@ t"or0v@oI0AoP0tHI,$7A)Lt$ $-$t$ AUATUSH1HH#LkpIHcCdI\I9sHI} HHt}ID$I;D$ HEIT$H,HID$Hmt?IL9wLHI,$u`LHD$HD$Lf.HhfDI,$A6uLKH }9DH=U`1H[]A\A]HL WI,$uLHmA6uHA6I,$A6usfDAWIAVAUATAUHIHEIcA HH;-B IH@t H;C LHII$HI$Mt_HLLAkO-ImtfH XDH=;Hmt4DL]A\A]A^A_DAfOHuLHfDLfDLeLH5 I5DAdOWff.fAWAVAUATUSHH$ T$ LxXHcH0WHcH0pWHcH0RWtzHcH08Wt`HcH0WtFHcH0Wt,HcH0WtHcH01ACH$01H$8l5H$@5H$H5H$P8xH$X8`H$`71҃tH$h7H9AGddC99L7L$0L$M9{1I$vHHHc} L=ZHcHHL} HEAf$@ HHPHE LH$*H} IH ףp= ףHHB)HD$ H| HE(HIHHH?H4HH)HHHH)ÉHH1)HAfA$Hu1 IIM)MyAD$-IIMIIIHMcMcHL$0L)¾LD$(HT$ HT$LD$(HHL$0I@ Iq0IyH@HEH~5 HL$8LL$0LD$(HT$HT$LD$(LL$0HL$8HMM]ILH1HAo  HH9uLHHL9I)I)IvMH4LLHHL9A4H@4HCI9~rAtHHC@tI9~[AtHC@tI9~GAtHC@tI9~3AtHC@tI9~AtHC@tI9~ At@tH\$ MIIYH ףp= ףLM0H{v HHCHD$ Hgv HE8LIHLH?J<"LHH)HIHHH)‰1)HAfAHu1 IH)My C-HHHɿHIHLcHL)LcHT$m HT$HI@ PIw0IH@HEH~ HT$nHT$HMMUILL 1HfoAHH9uLHHL9I)I)IvL HL LHHL9D 3H7D HFI9~kH|3HF@|2I9~U|3HF@|2I9~B|3HF@|2I9~/|3HF@|2I9~|3HF@|2I9~ t3@4H\$ I_L}@Hs H{HHs HEHIH~@ IV0INH@HDHT$ L}H]P8fHz0HrH@HE<taM1LLMII9taIz 4LjMtHL)L9J  uHrH<uHD$ LJ< fHmEH=. LA0O`I.DH PH=A`<$xH UDAH=8DP$$H[]A\A]A^A_@H9 H5H8I.tDA+OHm]HPfDHHT$HT$I.uLxfDIFHHD$ ?fIyHIHL8H(A<$HL$HL$HIiAO7D;IH]@A!ODHDŽ$p$H$F L$8L$M9t"I!HDŽ$x$H$? L$@L$M9t"IHDŽ$$H$( ~L$HL$M9t"IHDŽ$$H$ /L$PL$ M9t"I4HDŽ$$H$J L$XL$(M9t"IHDŽ$$H$6 L$`L$0M9t"IHDŽ$$H$ tFL$hL$8M9t"IKHDŽ$$H$H$0L$(H$pHHLHLHiH$8H$xHHHH[HЃ3H$@H$HHHH HЃH$HH$HcHHH0"HЃH$PH$H-HHH:#HЃH$XH$HHHH#HЃt_H$`H$HHHH"HЃt-H$hH$HHHH$HH$J8H$H$@HSHHHH HHHiH$L$HHHIMzH3H$L$PHHIMHH$L$XHHIM HH$ L$`HvHIM!HH$(L$hH@HIMl!Ht_H$0L$pHHIMB!Ht-H$8L$xHHIM"HLH9s H9 HD$$Do$ DUDo$0Do$@Do$PDo$`o$pD)$o$o$D)$ o$o$D)$0H$ )$`o$o$o$D)$@HPX)$pD)$P)$)$)$)$)$)$-IcH̠ H;`H HƒYuHcHH;`H $uHcHH;`H uHcHkH;`]H uHcH6H;`(H uHcHH;`H tTuHcHH;`H t#uHcHH9`o$o$o$o$ )$H$o$0o$@)$ o$P)$0H@Xo$`)$@o$po$)$Po$)$`o$)$po$)$)$)$)$)$)$H̠mH;`_H MHcH̠8H;`*H RMHcH̠H;`H MHcH̠H;`H MHcH̠H;`H MHcH̠yhH;`u^H MHcH̠y;H;`u1H YMHcH̠yH9`:AFDd$ L$EH$@H$pHAAWH$8LL$证AYAZH|$$DH H H H?H1H)f.1fH, H5a 1H8PAAODH+ H5` H8=f$/@H+ H5` H8xHQ+ H5b` H8H)ك,^HcHcAHGALHNLAoN(HD7 HNhA]Ao#Ht7H Ao(.AtiAoqAuAo[XAo`fAtDAoiAmAospAoX^AtAoiAmAospAoX^ЉމЃ)9t8HHHcHH@HĀH@HԀHDŽ$H"HDŽ$taHDŽ$tPHDŽ$t?HDŽ$ t.HDŽ$(tHDŽ$0t HDŽ$8HcH$@qH@H9H$@fHn$@$Pt$`t$pȃt HH@VH$HDH( H5] H8EA O'H( H5] H8 })HcH$ ALFL$ AJ L$ LYBo LH|$HcINL$ B ML $LI8HxBo MLD$(LD7 Ht7NH4MH$ B o Ll$0L$ HI4 ABoBBo Bo 4AtbHL$H4$LT$(L\$0oaf)d$AobAcAoE)$$GAt"oafAoBACAou)$wЉ)9t8 HH0HcH0HpHİHpH̰HDŽ$0HDŽ$8taHDŽ$@tPHDŽ$Ht?HDŽ$Pt.HDŽ$XtHDŽ$`t HDŽ$hHcH$prHpH9H$pfHn$p$t$t$Ѓt HHpVH$H5HLrH1bHM% H5^Z H8D11PH% H5,Z H8o$ o$0o$@L$ o$P)$o$`o$p)$ I]Xo$)$0o$)$@o$)$Po$)$`o$)$po$)$o$)$)$)$)$)$AFTDU IcHĠxH;`jH HHȃUHcHԠ=H;`/H UHcHԠH;`H ~UHcHԠH;`H IUHcHԠH;`H UHcHԠymH;`ucH UHcHԠy@H;`u6H UHcHԠyH;`u McJELcJDPMcJDPMcJDPMcJDPvMcJDPWMcJf<1H$j)H$H$H$H$ &H$(H$01҃tH$8H9AGddCH$0HcIHHcҍuHHHDPt!HcHHHDPtH$H|$P~H|$Xu HDŽ$H|$`u HDŽ$tnH|$hu HDŽ$tUH|$pu HDŽ$tH/HII9u|$ yH$@H$pHAWH$AH$8L$`L$L$D$0XZL$@M|1IHMHL9ub1҅H$Y,1HD$PH$HÃH$HD$XtjH$HD$`tWH$HD$htDH$HD$pt1H$HD$xtH$H$tH$H|$PgHDŽ$MI JJH?H1H)…1fDVLH$pH$xH$nH$]H$LH$;H$*H$HKH0HcH0HpHİHpH̰MHcɍCH0HH0HpH̰HpHİMHcɍCH0HH0HpH̰HpHİMOHcɍCH0HH0HpH̰HpHİM HcɍCH0HH0HpH̰HpHİMHcɍCH0HH0HpH̰HpHİMHcɍCH0HH0HpH̰HpHİM?HcɍCH0HH0HpH̰HpHİ1181mH$(H$$J>IH^H$@H$pHAWH$AH$8L$8\L$L$D$0A[[ML$@NDUL$HH$o$ IEXo$0o$@o$Po$)$)$ o$`o$po$)$0o$)$@o$)$Po$)$`o$)$po$)$)$)$)$)$)$AFDUDQA.DT$(L$vL$DT$(AM~jH$@HD$(L$HH$1l$0Dl$8DMIHLE1LLHL|$(I9uADl$8l$0DDT$(H$ DT$(H$0HPXHcHH9qH$(H$DT$ DT$ DT$ L$DT$ AH$H~iL$@vL$HH$I1D|$ LIELHLADLHHD$(I~I9HD$(uD|$ D`DUH$@H$@H?H1H)1H HHH?H1HH)QӸ̸ź~t1EI?H/tHL|$(I9uEbH$(H$"XNDE11IHMHH9uA4H AOH=L'@H /NH=AQff.ATUSHH- IHHEHnt G`1tID$pHC01tID$xHC81tI$HC@1tID$hHC(ID$@HAD$dC$ID$XHCID$PHCAD$`C I$H{H/t.LcI9t 1[]A\fDI,$t!HCfLfDH H5jH8[]A\H5!6 H=BP }S 4H=lH 萔H{HtH/tHCL3AUATUHHGH5; HHDIMID$H5j< LHH'HI$HH!I$HHEH5qB HHHIHEHMHEHtGHH L`H=8 HHHmt.H]A\A]@H0fDL _HHD$ HD$H]A\A]@A9DH !mH= H1]A\A]IHA9I,$uL럐IA9Hm}HgpfA9A9ATIUHHHGHtHHHEHLP0HHt`H(tHc HH]A\fa2H H= H1]A\fk2@AUIATUHHIHtHL]A\A]Ha H8qtHEH5=? HHHHHIEtEHELHHHt5HHEHHEHt)IHcHVLHHƾ-&Ht1H H=5ؐ+&HZHt$ t$ ff.fAUATUHHGHHIIH56> HHHLLHHEx9HAHEtHD]A\A]@HHD]A\A]H&HEtQH H=nAHD]A\A]fDH[&fHt$ tt$ HPHs H54AH81>AUATUSHHiHIŋClL% I$,HHfHnfInHflLe(EL%/ ID$HHH=#m莾u`1LHIMt;HmHL[]A\A]f.L% I$YCHHm%tnH pH=3E1SHL[]A\A]DImt)I,$tJ%HHL[]A\A]fLؾfDHt$ ľt$ }L谾fDL1HIH@f.%8Hw H5kH8pff.AVAUATUHHHGH55 HHoIMrID$H5; LHHII$HI$MxH_HEH54 HHHHH{HEH55 HHHIHEHMHEHID$H5; LHHHI$HHI$HH=A2 H艼IH}HmH5K2 LcHHI,$HLIHEHmImIMHPIIHt2HL]A\A]A^H耼LpL`HL]A\A]A^ÐLHH81EaI,$uLH ME1H=1|,IEHMLLлHIMH >+aH={躊HL]A\A]A^IvHH -aE1H=t{of.A:af.DME1H H=4{/IEHPfH/A+H5. HHVUHHD$IfDGWHH HHcAH9H H5oH8Ӷ论HLAof.GWHH HcAH9?fHF HHD$HFH$至I1]H=? 19C,uH aH=uLfH-H0۹Hn+X軹HHHo H5iL jAH HH81ټ^g+_D+a:+H@`HtpHHtdHHtZH H9Eu'@H`xHmAH HH5HHu&e+_ʸHH H5ښH8˴fD]+&fDAUIATUHut10IMtSH? LHLID$HID$H ID$ID$ ID$(Hx L]A\A]fI,$t9E1]LA\A]DH H5R" 18Iyf.LfDAWAVAUATUSH(L%+ Ll$`Ht$HT$M9CHc߅PL IMοIHMgH7 1LI$HH|7 Mw(IG H=" HH4HM> I$LpHEHDžI/oT$`o\$po$o$o$o$o$o$o$o$o$o$o$  0@P`MtAE8IELP8IH0HpH/LpIH0I$HIAU`AoMhAoExIMXAoUPHHD$hExMhU`]dHHE@HLeHUPALHDžfInŃHfHnflEpH9s"HHH9v H8xHLHMPI9+E1I}IHMt I.SH}PIHLHøIIMHIH I9GMwIVHdMt IcWIHcHEIII/ILuPL9M5@L IMDL8H I9GqLHHtwHD$mH|$IH/rhLILuPL9sHE~D$ID$HPHUxL訮苳H\IfDLx[IEH(L[]A\A]A^A_fPIH xH=nM`}HEE1HHEHtMtI,$uLfDHfDfDM\I닐H^IAItFH ^IH=,n|jf.I.E11[HALnH DH=m|HE1)DIIAGAWHH IDI/uzE1fHALfH HAH=Zm{HmWH躬JH [HH=%m{E1%H “fHH=m{uxIE/DL踯IAGAWHH HII/aIA%H SaIH=l4{E1 p|HH=p`14HH HGIH9t=HXHHyH1HH9H;TuMxIAAxdvxvpvhv`vXvPvHv@v8v0v(v vvv6L HHtDHHH9LHuH;| :fD1E18fDMH ݑKHD$H=CkyHD$H@ATUHHG@DWdHwpHOxH<$IHD$LE'MH$H9L9AD I9M9AD !AR„HD$H)HxH=oD)L$o)T$PAo)$tsof)d$ oi)l$`Aop)$tLo~ )|$0oy )|$pAo` )$t%oF0)D$@oI0)$AoP0)$DЃAt"HH4HtH HLPIHĐL;HH~H;a H蟀HEIHEHtHL]A\H踨HL]A\f.H$H9L9 AR„RHD$H)HxH=:o.Dfv)l$o1)$)t$Ptao^)\$ oy)$)|$`t@on )l$0oq )$)t$pto^0)\$@oa0)$)$DЃAHH4HtHLHDŽĐHTPHHH Î<JE1H=Vhv,H 5H=YhvHL]A\fDHHD$HHD$PIH$AHFHD$HAHD$XI@H$AHFHD$ HAHD$`I@H$AHFHD$(HAHD$hI@H$AHF HD$0HA HD$pI@ H$AXHF(HD$8HA(HD$xI@(H$A0HF0HD$@HA0H$I@0H$AHF8HD$HHA8H$I@8H$H+ HHxH9HXHHqH~ 1f.H;THH9uH] HJH5B\HWH81ܭHmH ,5E1H=fftHL]A\H -5E1H=8fctHEHGHHD$HHDŽ$HD$PAHFHD$HAHDŽ$HD$XAHFHD$ HAHDŽ$HD$`AHFHD$(HAHDŽ$HD$hAeHF HD$0HA HDŽ$HD$pA=HF(HD$8HA(HDŽ$HD$xAHF0HD$@HA0HDŽ$H$AHF8HD$HHA8HDŽ$H$HߣYH H5H8Ԥ3HHH9HuH;P DAUIATUHSH10IMtzH LHLID$HH[/ I\$ID$I\$ I\$(Hx2H+/ HI$pID$LIDŽ$H[]A\A]I,$t9HE1[L]A\A]Hy H5  18IJfL訢fDHHX蓥HtHfPH  8HD$H=cqHD$H@HHcd胥HtHfLH ]7HD$H=kc>qHD$H@ATIUHHGH5 HHHHID$t_HELHHHtOHMHQHUHtFHtH]A\fHHD$sHD$H]A\fDLHe-&HtFH xH=`^pH1]A\@+&fH-Ht$t$ff.AWAVAUIATIUHSHH8HD$HHt$`HD$PHD$XyHI|$XHHD$(L$0HA$ID$LLLP0HHH(PI$HIcT$dHH9r@HH9H8xH5 H=* A1A-H >H=Fan\fHL$XHD$HHHT$PHt$HHHD$PHLpLhH@HD$XH(ffInH|$(fHnfl)$>Hfo$H8LhHhLpHt H/Mt ImHt HmHD$HH{XLk`HkhHCXHD$PHC`HD$XHChHt H/Mt ImpHt HmwHD$HHD$PHD$XH DDH=`m1A$MdMd$XD$4L$0HCP|$0LkHkH$MH~]HsD$0HKXE1Ht$H\$8LHl$ ALMIHt$LIMDLH9L4$H9l$ uH\$8D$4H|$(譜H HH8[]A\A]A^A_HD$(IH 蕝A1A@M/ LkL$0HSPE1LHsNSwfLc跞L$0HSPHsLASD8fDH E1H\$LIH,$DLLLH&II9uH\$@AY1AA1AHCXHD$HHC`CXHD$PHChHChHD$XL3)iH|HLAWAVAUIATUH HGH5u HH=HHHEH5$ HHH9IHEHM HEHFID$H5* LHHHI$HHI$HH=% Ll$HD$H5x HWH9+LL L9LXMMQM~"1ILH9L9HI9uHt$1HB8HHIMA9AjHmuHmDDH H=A\iH 1]A\A]A^A_@L8H(HHH9t4HuH H9t#HHL9tHuI9&fDHOALqE1 uLgH=+G薘&LLAIM_@趝IHfHnfInHfl@H= 虢HtImtUH ]A\A]A^A_ImAiA9L@vImfDLHD$HD$H ]A\A]A^A_HmA9I,$AiAL覘4AiAv9"蓡HAx9AikI[HA{9v HH( H5EH8!H:ff.@ff.ff.AWAVAUIATUSHHGH5| HHHHH H9]mLuM`L}IIHmqHLL4$HD$DcI.IWMI/TH=} H5 HGHHHHH=! H$Ll$H59 HWH9LL L9<LXMMQM~#1ILH9L9 HI9uHt$1HB8HHIMI$A`HI$u L,Ht HmlH }DE1H=X.egfHLؕLȕHHH9t4HuH X H9t#HHL9tHuI9fDHOALqE1 uLH=B6LLAI蝚M^@H9]FL}M9H]IHHmfInfInHHfl)$`I/II.teMH+tfLL#II$MHI$tqImtZHL[]A\A]A^A_úIfDL`fDHPfDH@9L0fDL fHt$1H)$I_IfDLHt$HHH$Lt$_IfDH訓諜HHA`aD胜HnI$A`HI$/I/LA`0I$HA`HI$HI$tTImtA`@LؒHH H5J@H8“eA`L蚒ff.ff.AUH7 ATUSHH8LfHD$HD$ HD$(HHMIHFHHD$1HHHl$HEH{H/zHkHEHH5 HHIMH5yLqH5yLIHNAoECAoMK(IE HC8HEH5 HH7HHH6HH/HE1I,$uzLH8D[]A\A]fDHH HxH5EATL wAH vH81X_ZH _xH=RA_H8D[]A\A]@IuHnHl$HEH{H/q|@H耎H5) HIHV芕HHD$IEH$ H_UDfDH w'`AH=*R_6I H- L- HEHHH==肎1HLHH1HuHmJ`tdH vH=QA{^fD+H\`fDH(Hf`@HT$ t$t$T$ ΓHtdF`ff.1HL$HT$ ML 4vH_H1L裖HHHv H5;H8oF`ATUSLXXMu1[]A\HH6 H0L9ufHkhHChfLc`CXI+t8MtI,$tHtHmuHfDLЍfDLfDICLt^A@tTHFHt|@tsIXHt|HJ1H~@H;t?HH9uEtL[XfLc`HkhCXHChMt$tLHH9HuH;5 Izff.AWH? AVAUATUSHHHHD$(HD$0HD$8HHL,HHtrHH HxtH5aASL sAH qH81芔XGZH esH=NK[HH1[]A\A]A^A_f.HHIHD$(HH5 H= H sHH=0NZfH4HHD$(@LyL% 1MHL9t'L;duIDHD$(HIO`@ID$0E1HD$JtI9HS I9D$H9FA|$  ~ FIT$H;VHFI|$H9AHAt HET$ DN DD@@8A  I|$HA@HE|$A LV0HHA@IEDAADDE9u4HLD$E1HvLD$ADIM9fDL5Q M9uuL9uuLLD$mHHtVH;F LD$H;= upL9tkLD$H|$脏LD$H|$AH/EdEy'HD$(QHGfDKDfDDfHL$(HT$0ILL 1qHqGLD$LD$g@LLD$Ht$辆Ht$LD$HHLD$Ht$莆Ht$LD$HvHI|$HDDDDff.AWH AVAUATUSHHHHD$(HD$0HD$8HHL,HHtrHH HoH5<SL nAH mmH81 Xg'ZH nH=HJVHH1[]A\A]A^A_f.HHIHD$(HH5 H=  XH n'H=IkVfH4HHD$(@LyL% 1MHL9t'L;duIDHD$(HIO`@ID$0E1HD$JtI9H I9D$H9FA|$  ~ FIT$H;VHFI|$H9AHAt HET$ DN DD@@8A  I|$HA@HE|$A LV0HHA@IEDAADDE9u4HLD$E1HLD$ADIM9fDL5 M9uuL9uuLLD$HHtVH; LD$H;=7 upL9tkLD$H|$LD$H|$AH/EdEy'HD$(щHW'fDKDfDDfHL$(HT$0ILL lH\'LD$nLD$g@LLD$Ht$>Ht$LD$HHLD$Ht$Ht$LD$HvHI|$HDDDDff.AWH? AVAUATUSHHHHD$(HD$0HD$8HHL,HHtrHH HxkH5a8SL jAH hH81芋X_<ZH ejH=EKRHH1[]A\A]A^A_f.HHIHD$(HH5  H= H j<H=EQfH4HHD$(@LyL% 1MHL9t'L;duIDHD$(HIO`@ID$0E1HD$JtI9HS I9D$H9FA|$  ~ FIT$H;VHFI|$H9AHAt HET$ DN DD@@8A  I|$HA@HE|$A LV0HHA@IEDAADDE9u4HLD$E1HvLD$ADIM9fDL5Q M9uuL9uuLLD$mHHtVH;F LD$H;= upL9tkLD$H|$脆LD$H|$AH/EdEy'HD$(QHO<fDKDfDDfHL$(HT$0ILL 1hHq T<LD$LD$g@LLD$Ht$}Ht$LD$HHLD$Ht$}Ht$LD$HvHI|$HDDDDff.AW1AVAUATIUHSHH$0HHHU  H5, ID$H9t6HXHHJH 1HH9H;tuL;% I$M$I$A~$Ld$(fInHEH; fl)$0t H;  HEE1HD$HCE1H|$D$ HD$D$$D$Ld$0HEH w H9MU L9HEJIHMt Im<HdH;% /HCH5T HHHA IMK L- M9L; u L; ѹ HIL`M!MlE1HCH5 HHH IM^ M9L;  6L; _ )LLL$8܂LL$8G ILxM9MQE1HCH5n HHH IM M9L; L; ָ LLL$8SLL$8 ILhM)M8E1HCH5 HHH IM I( HCLD$8HH5 HH LD$8IMk I) HCLL$@HLD$8H5b HHs LD$8LL$@HJ H( H|$H;Ϸ LHO@LMHLIL; M(MbHIL; j MILHILM9HfDHH9$HuH;5 fDMt$@It$pLd$`I$Ml$xLt$hHD$(HIcD$d L<H\$`H|$pLH4 ~H$LL~Ht$(H$L~fInHD$(@H H9C LcID$H4 M3HD$LLh@HL9\|$ HcT$ MLMxiD$H$8L8L$8HDLyHcD$HDŽ@HHDŽĀHDŽL$D$$IHD$H|$)HD$HHHALd$0~HtH' H2H9|Hm= H$ ID$H9t>HXH HqH( 1fHH9 H;TuH|$(HD$(A$MHHx$$$$$$$$$$$$$$$$$$$$$$$$$$$HIH H; H5 HuLA A@@fLLL$8S}LL$8IAN@AHmI)DDE1H [^H=G_FFH|$(tH|$(HHD$HHMt I/HL[]A\A]A^A_HcCIHcHEIIHD$LLh@HMIH$ T$$H5a H8oIAAA2wDDH ]AH=E9AbEDA@ttH I9Ad MaID$H MI)Lu@H I9A MyIGH Mt IcAIHcHEIIjI)LkufDH I9AMiIEH Mt IcAIHcHEII.I)LtfDH T$$H5F H8npIADAu`fL9J\IHDI9H1AE1L; Ұ LL)HIHcT$HԀLHHHǃ|$ H@ HcD$ HD$L$ MIȃD$L$ fML$8$IcAIHcHEIILL$8xLL$8H I@HA T$$LT$XH59 LL$PH8LD$HHL$@L\$8lL\$8HL$@LD$HLL$PLT$X91L; 211MM9JHIL; x WM MIIMfM9HHAMOIZIAz@AuHDzHHH@HHD$HI4HLL$vrLL$M6I),LVrLHr^;rBfDLLD$8#rLD$8fLLD$@LL$8qLD$@LL$8-vHHD$ILLh@H'IMM9MOM)HLL$HLD$@HD$8yqLL$HLD$@HD$8DkzIMIAL@AHmH&qLL$8AT$dH= 1H X8?H=Y@E1IAb@As@yItIAd@A=@HxyIHHsImILNpftH$LLtH$LrfIn~f yIUIAx@A@IIHsIL, H VP?H=W>xI`IA@A(IA@AXxLD$8IfIA@A2xLL$@LD$8LL$8sLL$8HIIrDcCII M3MbIHH9 HuH;[ A$11M$$$$$$$$$$$$$$$$$$$$$$$$$$$HIHKH; H5 H%LAA#APfLLL$8svLL$8HHLL$@HD$8pH|$8LL$@IH/%LL$82mLL$8E1AA?Ld$01E1L; ^ CMLHM)LL$8qLL$8H=IHD$(fInH\$`LLL$8uLL$8HIHLL$8oI/LL$8IL^lLL$8IIoEaAAII ALLL$8uLL$8HHLL$@HD$8_oH|$8LL$@IH/aLL$8kLL$8MDcCII IHkI3IEyAAII MԾLHHII9LHL)MԸLH(IIEiAAII IA?AlH ?RIߺ8AľAH=-A:DA@&iLLL$8$nLL$8IEaAAII IHIMILLL$8mLL$8IEyAAII IHALLL$8mLL$8IEiAAII IIAR@AA A@HR H5RE1MH5-H81$r H Q@H=Q8IAh@AWA?AE1QIA~@A/AAA3H JMA?AM)I"fDAWAVAUIATIUHSHXHo H9H$HAH=ooHoP oX0o`@ohP$op`oxp$oo$$oo$o$$$ $0$@$P$`$pI9Ht$LAH/o(opHox o@`$oh0oHp$op@ooo$$oxPo$oHEH5j $H$$$$$ $0$@HHHdHE{HUHBHHGHHlHcAH9fAQHmaID$H5 LHHHHHEHEHPHH'H EUHH HcAH9!A-HmL$HADD$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$H$HN_HĠHHHX[]A\A]A^A_DHEAAHDEHhdHhiHcAH9Hu.iHufHQ H5 H8*eiHAE1HcHWuAAHDEpEUHH HHcAH9HŸ H5{H8dvhHAfEUHH HcAH9nfEUHH HHcAH9@HI HH}H9HXHHqH~1H;THH9uH HJH5rHWH81 k00fDH IH=%11fDE11H H%I|$H9%HXH"HqH~1H;THH9uH͝ HJH5HWH81Lj0MD09f 1!jHvjH 11HafHHa H5GH8Zb0H< H5FH85b0vHHH9HuH;  f 1Hm+HT$ t$`t$T$ fDH@`H5HH%HIHHC I9Gu'DL$I/AmLK``LH5ILWIHuf.HDHH9HuH; H@`HHHHIHH I9Gu'DL#I/AJL_=LH5KIHuXf1QdHH H5aFH8R`(dHH H58FH8)`@AWH AVAUIATIUSHHHD$(HD$0HD$8HHL4H HuoH6LAHt$(MH HFH9t H;ә ^L%KHH9H(HHHH[]A\A]A^A_fHH HVFH5?ATL DAH CH81gfX*ZH BEH=!(-1HH[]A\A]A^A_HuH6Ht$(#D]OfDLy1H 3 M'HL9t'H;LuI4Ht$(H MGDHA0E1HD$@JtH9Hs H9AH9Fy k~ HQH;VHFHyH9AHAt HDY DV DD@@8A ~HyHA@HE|$A VL^0HHA@IEDA~ADDE9u;H $H LL$1H_LL$H $fDIM9fDHq H9uuH9uuHϺLL$H $\HHtgH;b H $H;=ԗ LL$H9LL$HL$H<$aLL$HL$H<$H/Ny*HD$(\`H*IfK4+H mBH=S*1&@HL$(HT$0MLL CHQHt$(5LL$H $ZLL$H $6@HLL$Ht$H $XH $Ht$LL$i HLL$HL$H4$ZXH4$HL$LL$;HvHHyHHHHܕ H5}BHpBH81\b+DDDDx*ff.AWAVAUATUSHH L= HHAIL~HEHHE HCA?HE AC$HDHC8HC0HC@HEHC HC1AHC(HEH{H/HkL91H[]A\A]A^A_L5 LoPM9H I9MI9N„A} A~ IUI;VIEIvH9@H@t HEE A~ D@@8A Iu0IHA@LE@ MF0IvH@IEA}DA91Ht#LH<[H  DA2H5K H=| #H=vH >&H{HvH/NHCZ@HE('HmHC,E0C$HE8HC0HE@HC8DWfDM9L5 M9tvMI9NNLLvWIHXH;K L;- M9L\ImAEEHhVM9uLLVIH7H; H Q AH;& DM9L[ImH  A{EEf.LmPL5 M9?I9MI9N„NFA} A~ %IUI;VIEINH9@H@t HA} Av 8@ IM0IH@IDH@ IN0IH@IDHȃDA9@HQHX=DH H5jH8UH[]A\A]A^A_fDImELiTH qDM9uM9\OD+TfDLRH 9 Mf#DLQH (ImD;LS%@IvHMmHXA}DxLjQ#LKQA}D9IvH?I}HDDD8fAUATUHHL% H- I|$HH@H;-/ 9HtLH[Hl H5-H8SDH 9<H=!]1A\A]A$@HLmI@t'M9ZLLZHEHAHE1HLZHmIAMHIM@WLLQIm!LQ@Ha H5H8RDHu+tA$@t1UHHULQHH E1L 9RH 6H9H8H5*1kYX1Z]A\A]ÐHy H5v9HffHLQ0H1ZHJfHPHLPH1 LH5'H81XAUATUHHL% H-c I|$HH@H;- 9HtLH[H H5}H8QDH "7 'H=]1A\A]A$@HLmI@t'M9ZLLoWHEHAHE1HLoWHmIAMHIM@WLLLOIm!L O@H H5H8ODHu+tA$@t1RHHULNHHM E1L 7RH ,4H6H8H5z1VX1Z]A\A]ÐHy H56HFffHLUN0H1WHJfHMHL NH LH5wH81VAUATUHHL%B H- I|$HH@H;-ω 9HtLH[H H5H8UNDH r4GH=xS]1A\A]A$@HLmI@t'M9ZLLTHEHAHE1HLTHmIAMHIM@WLLLIm!LYL@H H5BH8JMDHu+tA$@t1BPHHUL(LHH E1L Q4RH |1HD4H8H51 TX1Z]A\A]ÐHy H54HffHLK0H11UHJfHHKHL\KHц LH5H81USAWH AVAUATIUSHHHHD$(HD$0HD$8H5HL,H=HL6LALt$(MIF toID$H5M LHHHHHEH5 LHHHЉHEHHEHHs HHH[]A\A]A^A_HH Hx2H5SL 0AH {/H81RX bZH X1H=6HH1[]A\A]A^A_HuL6Lt$(DLy1H 3 MzHL9twH;LuMtLt$(M_MG@H(I DbHbH 0H= *HH1[]A\A]A^A_fHA0E1HD$@JtH9H H9AH9Fy ~ HQH;VHFHyH9AHAt HDY DV DD@@8A HyHA@HE|$A vL^0HHA@IEDAqAtDDE9u;H $H LL$E1H KLL$H $A@IM9fDL5 L9uuL9uuHϺLL$H $GHHtjH;҃ H $H;=D LL$L9LL$HL$H<$MLL$HL$H<$AH/ELEy'HD$(KHafDOtkfDH4$F4$DDfHL$(HT$0ILL /HLt$(cOHBb,fDK@LL$H $FLL$H $@HLL$Ht$H $CH $Ht$LL$IHLL$HL$H4$CH4$HL$LL$HvHHyHgDDDDbff.AWIAVAUATIUSHXHHD$8HD$@HxHFH>H= HD$HH9t/HXHtKHqH~b1fDHH9tOH;TuHGI$LI<$HHX[]A\A]A^A_ÐHH9tHuH;H tfD+CH HD$H fDHHhH9t HHPHuL(LpMtIEHtHEMtIA@f@ϘHcWGHD$8HAJH{ HHD$@HHD$HIHHD$8I$MgIG HD$@HD$8IG(L ̳ HD$@IAHHIH=HL$LL$QBLL$HL$1LLIHMKL|$@H|$HH/I,$H\$@HD$HHD$@Mt ImHtHmtzMtI.t_H;I@LHD$BHD$HX[]A\A]A^A_H~ HL(LpMJOLBfDHpByL`B]LPB4CB1LLQJHD$@HA\0A=0HD$8H|$@Ht H/HD$@H|$HHt H/HD$L t HD$HHxXI9HIAHHW4@'A@HXHHJH21HH9L;LuH N(DH=1H|$HL$8HT$HHt$@蘲6H|$8HH/HD$8H|$@H/HD$@H|$HH/HD$fInfHnHD$HflHH8L@LxLpHt H/Mt I(Mt I/I$HxH^HI9HuL; | HD$fInfHnflHH8L@HXLpHt H/hMt I(Ht H+H|$8Ht H/H|$@Ht H/H|$HHt H/*H= H &DI$Hx1}LB@,AQ0H|$8HH/ ??>)CHuHy H5qH8?HD$@A\0> >> A}0LD$>LD$-L~>/Lq>I$HxHLD$T$S>LD$T$|T$<>T$LljT$'>T$dH߉T$>T$^T$>T$`T$=T$bIQH1 @HH9t I;|u1ItH9HT$(HL$ LL$H|$2nHL$ HT$(H|$LL$HH9u_AWAVAUATUSHHGHIHH;My H5 1IHtH09I.IL5 fDItOIubAT$AL$HH H;r ItmH;p HELL7HE11'El$AD$II IL8IHELIHEH2q H878IT$}ff.AWH_ AVfHnAUATIUHHHxSfHnHflHxL Hm HD$`H HD$hLL$0HD$8HT$@)D$PHL,H{HH|LLuLL$0MH LHHHD$8IMhLML M1HI9KL;DuIDHgHD$@I+HVHFLLuHD$@HFLL$0HD$8MLL$0HD$8HT$@L=o HI$It$H=o AHEHAWj5a 5# j5 Pj5B  IHEHPMHHEtvHxL[]A\A]A^A_@H,HHL="o LLLL$0IfHuZHVL=n HT$@HFHD$8H2fDLuMkHT$@L=n f.H 9AHHm HH52SL H81h:XZH  H=.E1&L=In LxHFHLuHD$8HT$0HH HIHII?IA[fDLL$0#fDE1I@0JtHD$ I9IfDHn I9@H9F3+Ax ~ >IPH;VHFIHH9@H@t HAx D^ D8@ .IHH@HHE|$ A HN0HHA@HEȃ #DA9uELL$LD$HtPLT$E1H3LT$LD$LL$AfDIM9JtI9KDTL=ql M9uuL9uuLǺLT$LL$LD$0HHH;Xl LD$H;=k LL$LT$L9 LT$(LL$LD$H|$z5LT$(LL$LD$H|$AH/ E E2B4Ht}2HHEH ; OH=JEL=ik LgH LHIHtWHD$0IHL$0HT$PILL PH*Dz3HTfHh.1LT$LL$LD$L.LT$LL$LD$LLT$(Ht$LL$LD$,LD$LL$Ht$LT$(HLT$(LL$LD$Ht$+Ht$LD$LL$LT$(\HvHIxH{2HgDDAWH߮ AVfHnAUATIUHHHxSfHnHflHxL  HCf HD$`H HD$hLL$0HD$8HT$@)D$PHL,H{HH|LLuLL$0MH. LHkHHD$8IMhLMLu M1HI9KL;DuIDHgHD$@I+HVHFLLuHD$@HFLL$0HD$8MLL$0HD$8HT$@L=Ih HI$It$H=h AHEHAWj5 5 j5; Pj5§  IHEHPMHHEtvHxL[]A\A]A^A_@H,HHL=g LLLL$0IfHuZHVL=g HT$@HFHD$8H+}LuMkHT$@L=?g f.H AHHpf HQH5SL H812XYZH (v H=E1L=f LxHFHLuHD$8HT$0HH 4H%IHII?IA[fDLL$0#fDE1I@0JtHD$ I9IfDH g I9@H9F3+Ax ~ >IPH;VHFIHH9@H@t HAx D^ D8@ .IHH@HHE|$ A HN0HHA@HEȃ #DA9uELL$LD$HtPLT$E1H1,LT$LD$LL$AfDIM9JtI9KDTL=d M9uuL9uuLǺLT$LL$LD$)HHH;d LD$H;=Id LL$LT$L9 LT$(LL$LD$H|$-LT$(LL$LD$H|$AH/ E E2,Ht}@2HHEH I H=L=c LgH LH>IHtWHD$0IHL$0HT$PILL H葱*ED+HT2fH&1LT$LL$LD$<$LL$LD$LLT$(Ht$LL$LD$$LD$LL$Ht$LT$(HLT$(LL$LD$Ht$D$Ht$LD$LL$LT$(\HvHIxH*H9gDDAWHo AVAUATUHSHHHHD$(HD$0HD$8HIL,H HH>LAH|$(M HG HGHPHH)HJ*HcЉH9J 1"IHhH}H5- HGHHIM{Hc(HH'H_ I9EMuMM}IIImfHnfInHt$0Lflº)D$0uI.IxH+NM5I/SI@H;a t H;w_ HD$IM1IH4E1HD$8H|$HD$IEH Xa I9MH9IEL4HIMt I)HEHH}H^ H9GHt$H<$HD$0Lt$8H<$IIMI/#ID$I;D$ 3IIL$LHID$I(;H|$M)L $HD$LL $HI9'L $Ht H` H2H9L $|&L $ImMtrI)ulL"bHH]^ HE H5SL G AH +H81*XmcZH  H=E1HHL[]A\A]A^A_@LL$4"L$ID$I;D$ LLL$%L$ dE1`L!L!HH>H|$(KHwWHD׉vf dI.I,$t*MtEI(u:Lw!0cI,$AuLL$T!L$MtI(tMt ImMt I/nH +E1H=9@LOMRLIIH/fInfInHt$0LflL $)D$0L $II)-LL$ L$fDLq1H  MHL9I;LuI|H|$(HMF1fH9OMtHIHDHL$ L$LL$L$LLL$L$*LI,$cuLImcE1L~DfGWHH HcЉH9)Hv[ H5/H8O *$HGWHH HHcЉH9LYLL$L$sHt$8LMHD$0H\$8IEDcxfDHA0E1HD$@KtH9H[ H9AH9Fy '~ NHQH;VHFHyH9AHAt HDY DV DD@@8A %HyHA@HE|$A L^0HHA@IEDAADDE9u;H $H LL$E1H LL$H $A@IM9fDL=Y L9uuL9uuHϺLL$H $HHtjH;Y H $H;=X LL$L9LL$HL$H<$"LL$HL$H<$AH/mELEy'HD$(!H]c fDK|fDI,$c2LP%S%IOL $/L $IfDMcI,$ylD@LL $L $H HuDHL$(HT$0ILL PLH|$(LL$ #L$HIH@HHD$HSIHH LL$H $2LL$H $wHLL$Ht$H $H $Ht$LL$THLL$HL$H4$H4$HL$LL$#HvHHyHDD DDic@H@`HHHIHH&W I9D$u)LI,$L+LH5)7IHubccHL $芼L $MtE1E1Mνc+cHoH_U H5H8THGt{HGHPHvHtOHt1t@HtHcWHHcHHE@GWHH f.GWHH HUHH@`HHHHHH@H;U uHHEHPHveHHtuHDHmt)H]HH5蔁HHtH@fDHHD$SHD$@HtHcUHHcHHEEUHH fEUHH HkH7HXH@`HHHHHHH|T H9GuXHGHGHPHvWHt}HthH|$H|$H/HD$XHD$H5TbHHuHHtHcWHHcHHE맋GWHH 똋GWHH HH|$H|$oHuHR H5H8|HgR H5H8ff.AWH AVAUATIUSHHhL n L-R HD$@HxHD$HHD$PLL$0Ll$8HHLHH2HQHHIH HHIHHQ I?SIH5H8L LA1XqfZH [H=iE1HhL[]A\A]A^A_HHLHZMHI$It$H=pQ AHEHn HH, AUjRPjRLPj5  IHEHPM%HHEVHIfoLvLY)D$0MnLL$0\@LYMHH< LHL\$L$pL$L\$HIIHD$0M~~HML5r H1DHH9L;tuM4MLt$8IRLvLt$8LLL$0f.LLYLL$0MLt$8DMHHEH qfH=zIF0L\$E1HD$ L$Ld$IHH\$LMDO|L9HP H9CI9G{ KA XHSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A Iw0IHA@IDDAADD>E9u*HHfDIL9LL$H\$Ld$DL9uuM9uuLHIHtH;N L;=N M9LI/oLL\$L$MH\$Ld$y;L$L$Ht8[ffDLL\$L$MH\$Ld$O4&fDHL$0HT$@ILL iH詛x%LL$0<H0Q?`fRfDLD$,D$,$HLxIwHH{HLT$L$L$LT$HTfDD>DD>ff.AWHߑ AVAUATIUSHHhL > L-L HD$@HxHD$HHD$PLL$0Ll$8HHLHH2HQHHIH H{HIHHwK I?SIH5H8L A1XZH + H=iE1HhL[]A\A]A^A_HHLHZMHI$It$H=J AHEH> HH AUjRPjRLPj5 Y IHEHPM%HHEVHIfoLvLY)D$0MnLL$0\@LYMHH LHL\$L$@L$L\$HIIHD$0M~~HML5B H1DHH9L;tuM4MLt$8IRLvLt$8LLL$0f.LLYLL$0MLt$8DMHHEH A H=zIF0L\$E1HD$ L$Ld$IHH\$LMDO|L9HcJ H9CI9G{ KA XHSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A Iw0IHA@IDDAADD>E9u*HHfDIL9LL$H\$Ld$DL9uuM9uuLH IHtH;_H L;=G M9LI/oLL\$L$MH\$Ld$y;L$iL$Ht8rfDLL\$L$MH\$Ld$O4&fDHL$0HT$@ILL Hyx%LL$0<H Q?wRfDLD$, D$,$HLxIwHH{HLT$L$aL$LT$HkDD>DD>ff.AWH߅ AVAUATIUSHHhLnF HD$@HHHD$HH HD$PHD$0LT$8HHL,HH0HOHHIH HRHIHHEE I?SIH5H8L A1X&ZH  H=gE1wHhL[]A\A]A^A_DHHLH\LI$HIt$E1H=D HEL~ H ҍ jAPQjAPAQHj 5 P IHEHPM$HHEWHJoHVLI)D$0MvHD$0\@LIMHH LHLL$LL$LD HIHD$0MHML5 H1DHH9L;tuITHHT$8IQHVHT$8HHD$0f.HLIHD$0M~HT$8LHHEH  ]H=zIF0LL$E1HD$ Ld$IHH\$LMfO|L9H3D H9CI9G%{ [A pHSI;WIGHsH9@H@t H{ E_ D@@8@ ?HsH@HHE|$ A Iw0IHA@IDDA9A<DD>E9u2HHd LmB IL9LH\$Ld$fL9uuM9uuLHNIHtH;'B LA L;=A M9Lb LA I/aLLL$H\$MLd$y-+ Ht6@LLL$H\$MLd$KT"fHL$0HT$@ILL HAx%HD$08HIMLfDLD$,D$,L@ +@HpL@ @LPL@ ya@IwHH{HLL$ LL$Ly@ H DD>DD>ff.AWAVIAUATUSHHIH@L-? H5 HL91L=HHtEHEH5R~ HL9z1H IHyHmuH@HL[]A\A]A^A_f Ht HHH5)r E11HLHmIuHDLHHH1QIH? I}XH(H9HNHEHHWd@WL@?HXHHJH1HH9H;lu111LufHHIML;-W> L;-= u L;-> u5u{HmuHImTLGLhHH9ZHuH;- > HE1K HtImXHmt!I,$LfHIH= MwXL(M9MIEHIVA@A@IXHt;HJH1HH9L;lu111LsMM9tMuL;-< tf. I$HfDLLu@LH]Hv1 HH9t2H;|uI]HA1 HH9tBM;tu+E1JtH9ZH|$HIH|$L9u1H9ItI9LHT$軡HT$HAWAVAUIATIUSHhH= HD$(HD$0HD$8HD$(HH`IuXLDHD$(IH*HH fDHLpMt L;5: HPHuHH@HL$H$Ht HD$HMtIH$HtHHEH5/ HHHHD$0H=I}hHD$8HeH|$0H 8 H9OLMHGIHH|$0HD$0H/HD$8H|$0Ht$@L|$@HD$HLd$PrHD$(I/H|$8H/H|$(H|$0HD$8H/I}hL|$(HD$0HD$(HILHH $fIn~D$H:HZflLjHJHt H/DHt H+eMt Im=HmI,$Mt I/Hh[]A\A]A^A_ÐHH@HL$H$HfA2AHE1E1H|$0Ht H/H|$8Ht H/+H EDDH$H=C&HH$t-HEHP1HUHuf.HH$H$M(I,$LH$H$LH$H$Hh[]A\A]A^A_ÐkfD[&fDIGH;8 H;x6 LhpMtEI}t>1HGHD$HLAULT$I*u5LHD$HD$!H@hHH@H 1LHD$(H~A 3Ay@fDL H$wH$fDLH$\H$HH$DH$Ht$HHD$HHD$@Ld$PHD$(@HD$D$HD$D$@HD$D$D$HD$@A2AsA2LL$(MI)H|$0HD$(Ht H/HD$0H|$8Ht H/HCXfHHD$(HC`CXHD$0HChHChH5_r HD$8HEHH/IMH|$(L9I/HD$(H{XLS`L{hHCXHD$0HC`HD$8HChHt H/bMt I*>Mt I/HD$(HD$0HD$8H DH=HL$(HT$0HHt$8iA=3AE1HH4$fIn~D$H8LXflHXHpHt H/Mt I+Ht H+H|$(HHHPHHHsD$Hl$D$HD$WfAE1WvA2A2LT$VT$bIIGHHHD$(*L\$D$L\$D$HD$D$&LD$D$LH|$0=K^1IHHLImLHD$HD$LT$qT$L׉T$\T$LT$T$ELT$T$IoIGHH5j H=р AJ3E1AA53AILrHD$(A 3AHnfHHxHtHHt&HÐ{HuFf.FH H=Ȼs1Hff.AWAVIAUATIUSHH8H=x -H4IIVH@H5t LHH/IMI|$hIH%HHuL`H/ I9FILHIHHmI.IGHH]H=b1LLHyHI/I,$HEH;X/ L%C0 L9zHHH/ HIH53A1H81I,$E1Ht HmMt I,$H DAH=Iml1LFHYHmNH*ADHHHGI|$hIHqH . H9ERLEMELeII$HmfInfInHt$LflºLD$Lt$ )D$莾LD$HI(I/BHI,$HEH;- L%. L9HEHMHPHUHU HH9HHu!H)L@HH)HGI=HH)HpIrH1HoL  HH9uHHHHH9I)H)IvLD LHHHHH9tl;HBH9v]BD;HBH9vLBD;HBH9v;BD;HBH9v*BD;HBH9vBD;HBH9vBD;HEHHEHI$ImHmH8L[]A\A]A^A_fHLD$LD$fLPH6LLxmLhhI3HIMAH84L(I/I$3AHI$LE1S@HRLRL]H)1H T HTH9u}HHt$IHD$L|$Lt$ hHH+ H5LH8W 4H oH=ATIm3HVI/|1LAI1LLHH33v3A*IHw3I3A11L>IHI3HIHAfL%* L9HHH) HIIH5d3A1H81=A3ATH 3E1H=mH( H5-H8M滽3L-AIHHIHHtLЅt1H) HHÐLHHt8H(uFH 8H=#1H@Gff.AWAVLcAUIATUSHHHGHEIIvIHAJ41M~'H r HIT$H q H HH9uL;-( IEI}HPIUImE1Lt$D$MMIHED$@H' H9EHoIVMJ"IIH9IVHAI(uE1LMt I.FH DH=\A訸ImI,$Ht HmHHL[]A\A]A^A_ÿD$M_IHjHY DL$HHY IGH}HGH;!& !HHEH<P Hx@ IG H] HHH] IG(DIHHD$AHHXLHLωD$ 4T$ \MM軹=A\fIG HH] HDL$HH4] IG(IH&D$DL$HHAF IV0INH@HDHT$1Hl$ HLl$0IDL$Ld$(=Hr0HzH@HD;D$t_M1HLCLIIKTz LbMtHL)H9|?J  uHrH;D$uD$HLHHH|$hfDH# H5Hl$ Ld$(Ll$0H8I.#>ImI/t ALfDHHT$8cHT$83Hl$ Ld$(Ll$0DH" H5r1H8H=H `fIFHHD$uIE1HuLLIHk>L!H;" DL$TPXDL$IG HZ HHHZ IG(;IHH?D$AHI/Hl$ Ld$(Ll$0uLBH=o L3sI.tM(>AdL(>AMILLDH C=H=qM>A>p>AIAr>HIH; H5S DL$^H vU=AH=VIm1|@AWIAVAUATUSHHHG`IwdLIHH H;#  HPHOHXLp HIH(I,$H; AH; DH; t{HKAąypA1A/fDH rDDH=WH+AHfDI.HD[]A\A]A^A_@EIGELLPHHBIGH;- LLHPpHHh HHBHIMIGHLLPII$MHI$AIm&H+A&Hm#H#I.L@HI,$kL^LLLP HH0H(tH+HHfDHHBHrIML;% IGLLLPIHI$H o/AH=OH+DHH5Q H=k nV/H H=UMAfh/@Ha H5ҧA/H8HmH DMH=A蕯XnAp/HxHHH HEH H5H81uLLHjH H5ՒAp/H814HGHy<跦IAA/GAA//AA/HI$L:H g/H=MHHyIrHGH5AHPH H81AA/sH5N L$y5A/I,$AEL}8A/ IIfDH;5h AVAUATUHSHud]IHiHz H9HPHLhLp IEIH(L;-i L;- u I9HELHHHHEHP(IHImI.t%[L]A\A]A^ÐIH[L]A\A]A^DLP[L]A\A]A^@L(l.H XH=A=ImLrDHLH]IH;.D.H E1H=CƫHA H5.H8I,$uLf@>.HxHHH HEH H5H81v@H .H5H81N@.f/AWH] AVAUATIUSHHHL- HD$0HD$8Ll$(HHL4HBHHHIHT$(HI$HIt$E1H= HEHdP HL "` AUjPAQjPAQjPf IHEHPMHHEHfDHHHHH HIHHnH?L !HLIL@HHM SHH5H81X\ZH  H=2E1芩HHL[]A\A]A^A_LyMLHHT$(L\ 1L;DHL9uI@0E1HD$JtI9ZH I9@H9FAx ~ IPH;VHFIxH9AHAt HEX DV DD@@8A IxHA@HE|$A mL^0HHA@IEDAhAkDDE9VL$H`LL$HLL$L$ 0HHT$0HL$(ILL yHbHT$( N@HHEt&H LH=i@H(fDM9uL9uuzLǺLL$L$HH@H;i L$H;= LL$uwL9trLL$LD$H<$LL$LD$H<$H/tSIM9fDKHHT$(IODIfD$LL$L$6D$LL$L$LLL$Ht$L$L$Ht$LL$RGHLL$LD$H4$H4$LD$LL$$HvHIxHpDDDDIAWHW fAVfHnIH8AUHxATIUSHxHD$`H] )D$0fHnflHD$@HD$h)D$PHkHLHHH HLyHD$0LL-SW H1fDHCH9HL;luIHD$8HI_HLL$0HT$@H  NH>HFLyHD$@HFHD$8HHD$0MLL$0HD$8HT$@H  IHIvH= AHEQHj5J 5Y j5vV Pj5Q ?` IHEHPMcHHE5HxL[]A\A]A^A_HHHVH  HT$@oHFL)T$0FLHLT$LyH Q LT$HHD$0HUISDH AHH HH5ATL gH817XGZH w H=՛E1 HH HAHMEI@H  H fHxLML-eU M1HI9L;luIHHD$@L{HFHHYHD$8HT$0{fDE1IE0JtHD$ I94fDH I9EH9F#A} P~ ~IUH;VHFIMH9@H@t HA} D^ D8@ vI}HA HHN0HHA@HEȃ5DA9u9HtQLL$HLT$=LT$LL$DIAL9IJtI9K fH I9uuH9uuLHL$LL$LT$ HHtMH; LT$H;=U LL$uHL$H9;H/NdHD$8H_HH H H5jL SAHֹH81Y^)f.IE0E1HD$(@N|M9"H I9EI9G A} A IUI;WIGIMH9@H@t HA} Aw 8@ IMH@HHE|$(@ IO0IH@IDHȃD>A9ufLL$Ht2L\$HLT$LT$L\$LL$u2fK/H I9uu I9utIM9DLLLT$HL$ L\$LL$LT$HItwH; LL$L;= L\$1HL$ I9#LL\$LL$LT$L\$LL$LT$I/LDLT$nLT$HtD0f.HHEH 5 ~H=Be{HL$0HT$PMLL HqX5LL$LT$H|$LL$LT$H|$IMH@HHE|$ yH\fD'fDLL$D$LT$}LL$D$LT$Df.LLL$Ht$LT$9LT$Ht$LL$DHLL$LT$Ht$Ht$LT$LL$TDHvHDLD$ L\$LL$LT$D$ L\$LL$LT$ LL\$LL$LT$LT$LL$L\$LL\$LL$LT$NLT$LL$L\$IwHmI}HHDHu*H AD>JD>>fDAWHwG fAVfHnIHAUH`ATIUSHxHD$`H )D$0fHnflHD$@HD$h)D$PHiHLHHH HLyHD$0LL-F H1@HCH9HL;luIHD$8HI_HLL$0HT$@H A NH>HFLyHD$@HFHD$8HHD$0MLL$0HD$8HT$@H  IHIvH= AHEQHj5? 5NO j5E Pj5G U IHEHPMcHHE5HxL[]A\A]A^A_HHHVH Q HT$@oHFL)T$0FLHLT$LyHF 腈LT$HHD$0HUIUDH yAHH0 H|H5r~ATL ױH81X˃ZH H=mE1e HH HAHMEI@H a H fHLML-J M1HI9L;luIHHD$@L{HFHHYHD$8HT$0{fDE1IE0JtHD$ I94fDHq I9EH9F#A} P~ ~IUH;VHFIMH9@H@t HA} D^ D8@ vI}HA HHN0HHA@HEȃ5DA9u9HtQLL$HLT$LT$LL$DIAL9IJtI9K fH i I9uuH9uuLHL$LL$LT${HHtMH;T LT$H;= LL$uHL$H9;H/NdHD$8hH_HH H UH5^{jL îAHKH81Y^f.IE0E1HD$(@N|M9"H# I9EI9G A} A IUI;WIGIMH9@H@t HA} Aw 8@ IMH@HHE|$(@ IO0IH@IDHȃD>A9ufLL$Ht2L\$HLT$LLT$L\$LL$u2fK/H ) I9uu I9utIM9DLLLT$HL$ L\$LL$LT$HItwH; LL$L;=a L\$1HL$ I9#LL\$LL$LT$L\$LL$LT$I/LDLT$LT$HtDf.HHEH Y H=ڋՒ{HL$0HT$PMLL HMLL$LT$H|$DLL$LT$H|$IMH@HHE|$ yH#\fDfDLL$D$LT$LL$D$LT$Df.LLL$Ht$LT$LT$Ht$LL$DHLL$LT$Ht$qHt$LT$LL$TDHvHDLD$ L\$LL$LT$0D$ L\$LL$LT$ LL\$LL$LT$LT$LL$L\$LL\$LL$LT$辿LT$LL$L\$IwHmI}HHDHu*H {AD>JD>>fDAWHw? fAVfHnIHAUHATIUSHxHD$`H; )D$0fHnflHD$@HD$h)D$PHiHLHHH HLyHD$0LL-> H1@HCH9HL;luIHD$8HI_HLL$0HT$@H NH>HFLyHD$@HFHD$8HHD$0MLL$0HD$8HT$@H a IHIvH= AHEQHj54 5D j5= Pj58 K IHEHPMcHHE5HxL[]A\A]A^A_HHHVH HT$@oHFL)T$0FLHLT$LyHj7 }LT$HHD$0HUIUDH AHH HH5sATL GH81XZH WH= E1Ս HH H~AHMEI@H H fHXLML-E@ M1HI9L;luIHHD$@L{HFHHYHD$8HT$0{fDE1IE0JtHD$ I94fDH I9EH9F#A} P~ ~IUH;VHFIMH9@H@t HA} D^ D8@ vI}HA HHN0HHA@HEȃ5DA9u9HtQLL$HLT$LT$LL$DIAL9IJtI9K fH I9uuH9uuLHL$LL$LT$HHtMH; LT$H;=5 LL$uHL$H9;H/NdHD$8H_HH H ţH5pjL 3AHĤH81Y^f.IE0E1HD$(@N|M9"H I9EI9G A} A IUI;WIGIMH9@H@t HA} Aw 8@ IMH@HHE|$(@ IO0IH@IDHȃD>A9ufLL$Ht2L\$HLT$輽LT$L\$LL$u2fK/H I9uu I9utIM9DLLLT$HL$ L\$LL$茺LT$HItwH;` LL$L;= L\$1HL$ I9#LL\$LL$LT$脿L\$LL$LT$I/LDLT$NLT$HtDf.HHEH ɠH=zE{HL$0HT$PMLL HQCLL$LT$H|$贾LL$LT$H|$IMH@HHE|$ yH蓸\fDfDLL$D$LT$]LL$D$LT$Df.LLL$Ht$LT$LT$Ht$LL$DHLL$LT$Ht$Ht$LT$LL$TDHvHDLD$ L\$LL$LT$蠷D$ L\$LL$LT$ LL\$LL$LT$aLT$LL$L\$LL\$LL$LT$.LT$LL$L\$IwHmI}HHDHu*H AD>JD>>fDAWHG- fAVfHnIHAUHp ATIUSHxHD$`H )D$0fHnflHD$@HD$h)D$PHiHLHHH HLyHD$0LL-, H1@HCH9HL;luIHD$8HI_HLL$0HT$@H ! NH>HFLyHD$@HFHD$8HHD$0MLL$0HD$8HT$@H IHIvH=[ AHEQHj5l* 5.: j5+ Pj5* @ IHEHPMcHHE5HxL[]A\A]A^A_HHHVH 1 HT$@oHFL)T$0FLHLT$LyH) esLT$HHD$0HUIUDH YAHH HzH5RiATL H81臼XeZH ǛlH=|E1E HH HAHMEI@H A H fHȳLML-5 M1HI9L;luIHHD$@L{HFHHYHD$8HT$0{fDE1IE0JtHD$ I94fDHQ I9EH9F#A} P~ ~IUH;VHFIMH9@H@t HA} D^ D8@ vI}HA HHN0HHA@HEȃ5DA9u9HtQLL$HLT$荵LT$LL$DIAL9IJtI9K fH I I9uuH9uuLHL$LL$LT$[HHtMH;4 LT$H;= LL$uHL$H9;H/NdHD$8HH_HH H 5H5>fjL AHIH81fY^ef.IE0E1HD$(@N|M9"H I9EI9G A} A IUI;WIGIMH9@H@t HA} Aw 8@ IMH@HHE|$(@ IO0IH@IDHȃD>A9ufLL$Ht2L\$HLT$,LT$L\$LL$u2fK/H I9uu I9utIM9DLLLT$HL$ L\$LL$LT$HItwH; LL$L;=A L\$1HL$ I9#LL\$LL$LT$L\$LL$LT$I/LDLT$辳LT$HtDef.HHEH 9eH="w}{HL$0HT$PMLL H8eLL$LT$H|$$LL$LT$H|$IMH@HHE|$ yH\fDefDLL$D$LT$ͭLL$D$LT$Df.LLL$Ht$LT$艫LT$Ht$LL$DHLL$LT$Ht$QHt$LT$LL$TDHvHDLD$ L\$LL$LT$D$ L\$LL$LT$ LL\$LL$LT$ѪLT$LL$L\$LL\$LL$LT$螪LT$LL$L\$IwHmI}HHD_Hu*H [AD>JD>>efDAWHw$ fAVfHnIHxAUH ATIUSHxHD$`H )D$0fHnflHD$@HD$h)D$PHlHLHHH HLyHD$0LL-# H1HCH9HL;luIHD$8HI_HLL$0HT$@H NH>HFLyHD$@HFHD$8HHD$0MLL$0HD$8HT$@H A IHIvH= AHEQHj5 5/ j5" Pj5# 5 IHEHPMcHHE5HxL[]A\A]A^A_HHHVH HT$@oHFL)T$0FLHLT$LyHj" hLT$HHD$0HUIRDH ɑAHH HpH5^ATL 'H81X|ZH 7H=MrE1x HH mH^AHMEI@H H fH8LML-%+ M1HI9L;luIHHD$@L{HFHHYHD$8HT$0{fDE1IE0JtHD$ I94fDH I9EH9F#A} P~ ~IUH;VHFIMH9@H@t HA} D^ D8@ vI}HA HHN0HHA@HEȃ5DA9u9HtQLL$HLT$LT$LL$DIAL9IJtI9K fH I9uuH9uuLHL$LL$LT$˧HHtMH; LT$H;= LL$uHL$H9;H/NdHD$8踫H_HHl H H5[jL AH?H81֮Y^^f.IE0E1HD$(@N|M9"Hs I9EI9G A} A IUI;WIGIMH9@H@t HA} Aw 8@ IMH@HHE|$(@ IO0IH@IDHȃD>A9ufLL$Ht2L\$HLT$蜨LT$L\$LL$u2fK/H y I9uu I9utIM9DLLLT$HL$ L\$LL$lLT$HItwH;@ LL$L;= L\$1HL$ I9#LL\$LL$LT$dL\$LL$LT$I/LDLT$.LT$HtDef.HHEH H=l%s{HL$0HT$PMLL H1.jLL$LT$H|$蔩LL$LT$H|$IMH@HHE|$ yHs\fD\fDLL$D$LT$=LL$D$LT$Df.LLL$Ht$LT$LT$Ht$LL$DHLL$LT$Ht$Ht$LT$LL$TDHvHDLD$ L\$LL$LT$耢D$ L\$LL$LT$ LL\$LL$LT$ALT$LL$L\$LL\$LL$LT$LT$LL$L\$IwHmI}HHDϦHu*H ˉAD>JD>>TfDAWH" fAVfHnAUATIUHHHHSHh)D$ fHnflHD$PHD$0HD$X)D$@HL4HHHHH]HD$ IL=|! M1HL9L;|uIHD$(HHCL}HD$H>! M1fHL9H;\uIHD$0HH\$H/H^HFH]HD$0HFHD$(HHD$ H H|$(H\$ &HHFoHH~HD$0)T$ HG LgID$HI7IؤIILLl$0HHH=C% HSAƅ Hm EH= H5^ HGHH* IM{H] I9D$Mt$MtM|$III,$ fHnfInHt$@Lflú)D$@jI.HJH I/L;- t2IEH;  HLBHH H( HUHHUHHh[]A\A]A^A_fMHcGIHcHEIw@H LHH]\HD$ H LmHHH HH5RATL TAH zH81XTZH H=fl1Hh[]A\A]A^A_L舝{fDHhE5HHN H HHEH HL5! ģIH] H5A E1HHLImIbHEHM& HEHH5= L@HH H8I/LݟIH' H=b H¥IIM HIBLHATU*I,$H |DH=e_kHm|H1oDHC0E1HD$@JtH9H H9CH9FUM{ ~ HSH;VHFH{H9AHAt HDS DN DD@@8utA ZH{HA LV0HHA@IEDA A\DDE9u)HHSDIM9HD$0şHHHy H cH5OjL AH˃H81Y^rTL L9uuL9usHߺLL$HHbH; H;=< LL$L9 H|$H|$H/ fK_HHD$әHD$Hh[]A\A]A^A_DgGII DDgGII If.HFHD$(HHD$ HEHD$IfDIG0E1HD$@JtI9 H[ I9GH9F]UA ~ IWH;VHFIH9AHAt HEW DN DD@@8u{A IHA |LV0HHA@IEDAADDE9u0H&LD$H蕛LD$fIM9HD$(H_HH AH5LjL aH }H8H1#_hTAXfDL  M9uuL9usLLL$LD$,HH]H; LD$H;=r uLL$L9mH/KOLLLޛHuH H5}H8軛HIfDHt$HLMHD$@H\$HbHDATAHmt%H }DDH=A_e1DH@fDD$/D$$fDHHt$Ht$CH{HA@HE|$DLD$H|$ɛLD$H|$xIHA@HE|$pTfTHHt$胓Ht$HL$ HT$@MLL ~H"wTHvHH0W3IH\LVI/AUALݔH |DDH=]cH1@D$LD$袔D$LD$L@L舔LLD$Ht$aHt$LD$U7HLD$Ht$8Ht$LD$6L)LHvHDD U H ){H=\cHEHP1PDDcDDATA6DD8I/ATAmHt^TATHIxH zTH="\ebH@`H0HH HHH@L% L9uTDLeID$HvTIItaH̗IHmH覒HH5~HHH@MtHcEIHcHEIDeEII HmDeEII IyThHHH H5vzHizH81UUH@`H;HH+HIHL9`uSIE,MeID$HvgIIttL蟖IImLyH5z}HIHuHmHJuDMtIcEIHcHEIEeAEII EeAEII IoH -xTH=Y`11H xTH=Y_1 螕HHHV H5wH8蟑-H@`HtaHHtULIHtHL9`u"LjSI.ILEH5F|HQIHuI HuH H5wH8H 0wUH=X_14ATAH vTH=X^1H vTH=uX^1AWH AVAUATIUSHHhL5 HD$@H HD$0HD$HHD$PLt$8HHLHHHZHHvH vAHOL uEHUwIHLOHH HxSH5CH81XۅZH @vH=WE1]HhL[]A\A]A^A_@HHZL^L\$8LLL$0 oL^Li)D$0MLL$0HI$It$H= AHEH/ HH AVjRPjRLPj5P J IHEHPM&HHE2H踍%LyL- 1MfHL9L;luM LL$0MqMoM2L\$8&MLLiLL$0M~HML=$ H1HH9L;|uMML\$8IIE0LT$E1HD$Ld$MH$HLDLlM9H I9D$I9E A|$ A} IT$I;UIEIt$H9@H@t HE\$ EM DD@@8u}A I|$HA@HE|$A bIu0IHA@IDDAADDE9u'HHHL9H$fM9uuM9uuLLIHtH; L;-M 2M9)LImFtILT$HLd$H$yNHD$0H rAL qH$DILT$HLd$H$O 3HHEH 1r H=SYIG0L$E1HD$ Ll$MLd$IHH\$LDO|L9HS H9CI9G { A HSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A UIw0IHA@IDDA]AmDD>E9uTHtH舌u>@MLL$Ll$H\$Ld$OfDL9uu M9u*t&IL9LL$H\$Ld$~fDLH`IHtH;9 L;= M9L{I/tMLL$Ll$H\$Ld$GfDL$?L$Htƅ@HL$0HT$@ILL cqHyx-LL$0HY]˅5fDLD$ ̇D$ L訅8 L萅+IuHI|$HzfDLD$,dD$,H@EZL(8BIwHH{HDD>DD>DD$DD>ff.AWH AVAUATIUSHHhL5 HD$@H HD$0HD$HHD$PLt$8HHLHHHZHH@nH AnAHOL lEHnIHLOHH H1oSH5;H81PXZH mlH=OE1UHhL[]A\A]A^A_@HHZL^L\$8LLL$0 oL^Li)D$0MLL$0HI$It$H= AHEH HH= AVjRPjRLPj5  IHEHPM&HHE2H%LyL-5 1MfHL9L;luM LL$0MqMoM2L\$8&MLLiLL$0M~HML=t H1HH9L;|uMML\$8IIE0LT$E1HD$Ld$MH$HLDLlM9H I9D$I9E A|$ A} IT$I;UIEIt$H9@H@t HE\$ EM DD@@8u}A I|$HA@HE|$A bIu0IHA@IDDAADDE9u'HHIHL9H$fM9uuM9uuLLNIHtH;' L;- 2M9)LiImFtILT$HLd$H$yNHD$04H 5jAL hHހ$DILT$HLd$H$O 3HHEH i1H= KPIG0L$E1HD$ Ll$MLd$IHH\$LDO|L9H H9CI9G { A HSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A UIw0IHA@IDDA]AmDD>E9uTHtH؃u>@MLL$Ll$H\$Ld$OfDL9uu M9u*t&IL9LL$H\$Ld$~fDLH谀IHtH; L;= M9L˅I/tMLL$Ll$H\$Ld$GfDL$菄L$Ht@HL$0HT$@ILL hH x-LL$0HHY]5fDLD$ D$ L|8 L|+IuHI|$HzfDLD$,~D$,H|EZLx|8BIwHH{HDD>DD>DD$DD>ff.AWHw AVAUATIUSHHhL5^ HD$@H HD$0HD$HHD$PLt$8HHLHHHZHHeH eAHOL BdEHeIHLOHH! HfSH5b2H81蠅X{ZH dH=FE1^LHhL[]A\A]A^A_@HHZL^L\$8LLL$0 oL^Li)D$0MLL$0HI$It$H= AHEH HH AVjRPjRLPj5  IHEHPM&HHE2HX|%LyL- 1MfHL9L;luM LL$0MqMoM2L\$8&MLLiLL$0M~HML= H1HH9L;|uMML\$8IIE0LT$E1HD$Ld$MH$HLDLlM9Hk I9D$I9E A|$ A} IT$I;UIEIt$H9@H@t HE\$ EM DD@@8u}A I|$HA@HE|$A bIu0IHA@IDDAADDE9u'HH}HL9H$fM9uuM9uuLLzIHtH;w L;- 2M9)LImFtILT$HLd$H$yNHD$0~H aAL 8`H_$DILT$HLd$H$O 3HHEH `TH=BMHIG0L$E1HD$ Ll$MLd$IHH\$LDO|L9H H9CI9G { A HSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A UIw0IHA@IDDA]AmDD>E9uTHtH({u>@MLL$Ll$H\$Ld$OfDL9uu M9u*t&IL9LL$H\$Ld$~fDLHxIHtH;ٳ L;=O M9L}I/tMLL$Ll$H\$Ld$GfDL${L$Htf@HL$0HT$@ILL `Hx-LL$0HvY]k5fDLD$ lvD$ LHt8 L0t+IuHI|$HzfDLD$,vD$,HsEZLs8BIwHH{HDD>DD>DD$DD>ff.AWH AVAUATIUSHHhL- HD$@HHD$0HD$HHD$PLl$8HHLHHHZHH\H \AHOL [EHE]IHLOHHq H^SH5)H81|XZH 0\5H=>E1CHhL[]A\A]A^A_@HHZHVHT$8HHD$0 oHVLq)D$0MHD$0I$HIt$E1H=~ HEL" H jAPQjAPAQHj5` P1 IHEHPM%HHE1Hs$fLyL5 1MfHL9L;tuIHD$0HpMwM2HT$8&LHLqHD$0M~HML= H1HH9L;|uIHHT$8IIF0LT$E1HD$Ld$MH$HLDLtM9H I9D$I9F A|$ A~ IT$I;VIFIt$H9@H@t HE\$ EN DD@@8u}A I|$HA@HE|$A bIv0IHA@IDDAADDE9u'HHtHL9H$fM9uuM9uuLLqIHtH;ǭ L;5= 2M9)L wI.GtILT$HLd$H$yOHD$0uH XAL WH%fDILT$HLd$H$K3HHEH !XJH= :?IG0L$E1HD$ Lt$MLd$IHH\$LDO|L9HC H9CI9G { A HSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A UIw0IHA@IDDA]AmDD>E9uTHtHxru>@MLL$Lt$H\$Ld$KfDL9uu M9u*t&IL9LL$H\$Ld$~fDLHPoIHtH;) L;= M9LktI/tMLL$Lt$H\$Ld$GfDL$/sL$Ht@HL$0HT$@ILL `WHix-HD$0HmY]5fDLD$ mD$ Lk8 Lk+IvHI|$HzfDLD$,TmD$,H0kEZLk8BIwHH{HDD>DD>DD$DD>ff.AWH7 AVAUATIUSHHhL- HD$@HHD$0HD$HHD$PLl$8HHLHHHZHH0TH 1TAHOL REHTIHLOHH HUSH5!H81@tXZH Sc H=5E1:HhL[]A\A]A^A_@HHZHVHT$8HHD$0 oHVLq)D$0MHD$0I$HIt$E1H= HELr H 3 jAPQjAPAQHj5 P IHEHPM%HHE1Hj$fLyL5e 1MfHL9L;tuIHD$0HpMwM2HT$8&LHLqHD$0M~HML=d H1HH9L;|uIHHT$8IIF0LT$E1HD$Ld$MH$HLDLtM9H I9D$I9F A|$ A~ IT$I;VIFIt$H9@H@t HE\$ EN DD@@8u}A I|$HA@HE|$A bIv0IHA@IDDAADDE9u'HH9lHL9H$fM9uuM9uuLL>iIHtH; L;5 2M9)LYnI.GtILT$HLd$H$yOHD$0%mH &PAL NHj%fDILT$HLd$H$K3HHEH qO H=16IG0L$E1HD$ Lt$MLd$IHH\$LDO|L9H H9CI9G { A HSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A UIw0IHA@IDDA]AmDD>E9uTHtHiu>@MLL$Lt$H\$Ld$KfDL9uu M9u*t&IL9LL$H\$Ld$~fDLHfIHtH;y L;= M9LkI/tMLL$Lt$H\$Ld$GfDL$jL$Htq@HL$0HT$@ILL OHx-HD$0H8eY]v5fDLD$ eD$ Lb8 Lb+IvHI|$HzfDLD$,dD$,HbEZLhb8BIwHH{HDD>DD>DD$DD>ff.AWHG AVAUATIUSHHhL5N HD$@H HD$0HD$HHD$PLt$8HHLHHHZHHKH KAHOL 2JEHKIHLOHH HLSH5RH81kX ZH JOH=-E1N2HhL[]A\A]A^A_@HHZL^L\$8LLL$0 oL^Li)D$0MLL$0HI$It$H=! AHEH HH AVjRPjRLPj5  IHEHPM&HHE2HHb%LyL-u 1MfHL9L;luM LL$0MqMoM2L\$8&MLLiLL$0M~HML= H1HH9L;|uMML\$8IIE0LT$E1HD$Ld$MH$HLDLlM9H[ I9D$I9E A|$ A} IT$I;UIEIt$H9@H@t HE\$ EM DD@@8u}A I|$HA@HE|$A bIu0IHA@IDDAADDE9u'HHcHL9H$fM9uuM9uuLL`IHtH;g L;-ݛ 2M9)LeImFtILT$HLd$H$yNHD$0tdH uGAL (FH$DILT$HLd$H$O 3HHEH FCH= )=.IG0L$E1HD$ Ll$MLd$IHH\$LDO|L9H H9CI9G { A HSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A UIw0IHA@IDDA]AmDD>E9uTHtHau>@MLL$Ll$H\$Ld$OfDL9uu M9u*t&IL9LL$H\$Ld$~fDLH]IHtH;ə L;=? M9L cI/tMLL$Ll$H\$Ld$GfDL$aL$Ht@HL$0HT$@ILL FH x-LL$0H\Y]5fDLD$ \\D$ L8Z8 L Z+IuHI|$HzfDLD$,[D$,HYEZLY8BIwHH{HDD>DD>DD$DD>ff.AWH AVAUATIUSHHhL- HD$@H HD$0HD$HHD$PLl$8HHLHHHZHHBH BAHOL AEH5CIHLOHHa HDSH5H81bX֔ZH B H=$E1)HhL[]A\A]A^A_@HHZHVHT$8HHD$0 oHVLq)D$0MHD$0I$HIt$E1H=F HEL H jAPQjAPAQHj50 P! IHEHPM%HHE1HY$fLyL5 1MfHL9L;tuIHD$0HpMwM2HT$8&LHLqHD$0M~HML= H1HH9L;|uIHHT$8IIF0LT$E1HD$Ld$MH$HLDLtM9H I9D$I9F A|$ A~ IT$I;VIFIt$H9@H@t HE\$ EN DD@@8u}A I|$HA@HE|$A bIv0IHA@IDDAADDE9u'HHZHL9H$fM9uuM9uuLLWIHtH; L;5- 2M9)L\I.GtILT$HLd$H$yOHD$0[H >AL y=H%fDILT$HLd$H$K3HHEH >^ H= %IG0L$E1HD$ Lt$MLd$IHH\$LDO|L9H3 H9CI9G { A HSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A UIw0IHA@IDDA]AmDD>E9uTHtHhXu>@MLL$Lt$H\$Ld$KfDL9uu M9u*t&IL9LL$H\$Ld$~fDLH@UIHtH; L;= M9L[ZI/tMLL$Lt$H\$Ld$GfDL$YL$Ht@HL$0HT$@ILL e=HYx-HD$0HSY]Ɣ5fDLD$ SD$ LQ8 LpQ+IvHI|$HzfDLD$,DSD$,H QEZLQ8BIwHH{HDD>DD>DD$DD>ff.AWH AVAUATIUSHHhL5 HD$@H HD$0HD$HHD$PLt$8HHLHHHZHH :H !:AHOL 8EH:IHLOHH H[;SH5H810ZX+ZH p9YH=E1 HhL[]A\A]A^A_@HHZL^L\$8LLL$0 oL^Li)D$0MLL$0HI$It$H=a AHEH_ HH AVjRPjRLPj5 z IHEHPM&HHE2HP%LyL-5 1MfHL9L;luM LL$0MqMoM2L\$8&MLLiLL$0M~HML=T H1HH9L;|uMML\$8IIE0LT$E1HD$Ld$MH$HLDLlM9H I9D$I9E A|$ A} IT$I;UIEIt$H9@H@t HE\$ EM DD@@8u}A I|$HA@HE|$A bIu0IHA@IDDAADDE9u'HH)RHL9H$fM9uuM9uuLL.OIHtH; L;-} 2M9)LITImFtILT$HLd$H$yNHD$0SH 6AL 4H$DILT$HLd$H$O 3HHEH a5bH=IG0L$E1HD$ Ll$MLd$IHH\$LDO|L9H H9CI9G { A HSI;WIGHsH9@H@t H{ E_ D@@8@ HsH@HHE|$ A UIw0IHA@IDDA]AmDD>E9uTHtHOu>@MLL$Ll$H\$Ld$OfDL9uu M9u*t&IL9LL$H\$Ld$~fDLHLIHtH;i L;=߇ M9LQI/tMLL$Ll$H\$Ld$GfDL$oPL$Ht@HL$0HT$@ILL 4Hx-LL$0H(KY]5fDLD$ JD$ LH8 LH+IuHI|$HzfDLD$,JD$,HpHEZLXH8BIwHH{HDD>DD>DD$DD>ff.AWH AVfHnAUATIHx@HxUfHnSflHHxL=( HD$`H HD$0HD$hHD$8L|$@)D$PHHLHHZHLLiLL$0MHD$8HT$@HI$It$H=i AHEHAWj5A 5 j5 Pj5 d IHEHPMHHEHxL[]A\A]A^A_HHFLLiHD$@HFLL$0HD$8MLL$02DHfHHHHH0H I0AHOL .EH0LOODx@H HALiL5 1MHL9L;tuM LL$0MIMzkH /AL *0HHa H1H5SH81OX~ZH /iH=E1fH LHL$L$HHD$8IMHML5 H1HH9L;tuIHHD$@IILLLL$0HVHT$@HFHD$8@HFHLiHD$8HT$0jfDLL$0HT$@@fIF0L$E1HD$ Ll$MLd$IHH\$LDOtL9Hc H9CI9F { A~ HSI;VIFHsH9@H@t H{ E^ D@@8@ HsH@HHE|$ A Iv0IHA@IDDA9AIDD6E9uTHtHHu>@MLL$Ll$H\$Ld$K&fDL9uu M9u*t&IL9LL$H\$Ld$~fDLHpEIHtH;I L;5 DM9;LJI.QtMLL$Ll$H\$Ld$GfDL$OIL$H~HHEH +~H=E6LAIF0E1L$MHD$ILLd$MMtM9 H I9D$I9FA|$ A~ IT$I;VIFIt$H9@H@t HE\$ EN DD@@8A I|$HA@HE|$A Iv0IHA@IDDAADDE9u3HLT$HFLT$DHL9fDM9uuM9uuLLLT$ CIHtdH;~ LT$L;5S~ M9LLT$HLT$I.CkILd$LML$yOHD$0FH )AL (H~?ILd$LML$O DHL$0HT$PILL r+H~3HHALD$,4AD$,H?L>IvHrH{HHLD$ LT$@D$ LT$fL$EL$Ho~LLT$s>LT$tLLT$S>LT$TIvHII|$HDD6DDIUxIEpIJ JHH0JH,I}pJL $BIH H H\$:L $H 7H(\(HHH IELHHHHLIHILMHHH)ЉHfMuE1 LAIL)HIH LD$HcII)L$FL$LL$HI @ a IV0INH@HEM~%LHϾ LL$L$>L$LL$HHH{H HJ1HDAo  HH9uHHHH9IH)I)HvI<4H<2LHHL9A4@4HpH9~uA|Hp@|H9}aA|HB<HpH9~KA|Hp@|H9~7A|@|HPH9}#AtHB4HPH9} ADHBI~Mu H L $H&HH IE(IEL $HHa@ HS0LcH@IDHT$E1ADHz0HrH@HE<tpLM1L $H)?L $MIIKTz -LbMtHL)L9J  uHrH<uHD$LL $J<H?L $fMI/7.=Lt$$:$t$"HLL$Ht$n:LL$Ht$H-w H9EHLL$Ht$ACHt$LL$HHtWLL$Ht$HD${=H|$Ht$LL$HH/LL$Ht$9LL$Ht$H@LL$Ht$>HHt$LL$Hf.H9LIlHHE @HH|HLL$Ht$ H\$ @HiH 1H/HH93I;\uIH\$ HHMHHl$(|L#L#:L#tL#/I( Hϒ H H9XH HHL{ MJI@LD$LH5o HH>LD$IIHMIH ID$LT$LH5դ HH LT$IM IPHBpH5 H@H( LT$LH4$LD$LD$LT$HIHHIH=LT$<$HHHX)LT$HICH HH H9XH/ H HH HHCLT$HLD$H5 HH LD$LT$IM H+wH5 LLLT$LD$)LD$LT$I/LLHLD$LT$pLT$LD$HI<I*Hm|I([H5 LL\$L\$HIL9pHhH LpHEIH(fInfHnHt$0LflƺL\$)D$0HmL\$ILM:I.I/H5o LL\$ZL\$HIOL\$HI1H LLL\$LD$HI@HХ H)LD$L\$HI,I(I/H4$LLL\$L\$"L]L\$HIHLL\$HD$LD$L\$HII(I,$H,$;I+H,$MRImL]HHIH\$ H>ML$H M1fHI9I;\uI,H}Hl$(HE1HC0KtHD$H91fDH[ H9CH9F{  ~  HSH;VHFH{H9AHAt HDS DF DD@@8~A  H{HA@HE|$A  LV0HHA@IEDA A DDE9u)Ht>L $H#!L $II9KtH9K@LY L9uuL9uuHߺLD$L $ HHt_H;Y L $H;=TY aLD$L9SLL$H<$#LL$H<$H/ J]HD$ !H AL H#DL/LLT$LT$LLHC01HD$DItH9HY H9CH9F{ W ~ ~ HSH;VHFH{H9AHAt HD[ DF DD@@8A U H{HA@HE|$A 4 L^0HHA@IEDA AY DDE9u;L $HHL$HHL$L $DHI9fDLW L9uuL9uuHߺLD$LL$H $HHtjH;mW H $H;=V LL$LD$L9LL$HL$H<$ LL$HL$H<$H/dFymHt`*fDI,WLPH@L06L YHL$ HT$0MLL LYH\$ LLHt$8L$HD$0Ld$8L$IMMXMMPIII( fInfHnL׺flHt$0L\$LT$L|$@)D$0>L\$LT$H$I+SLLT$LT$L$f.MtI+uLMH=y HB H5C IfDE1E1E1E1sAf1MtI(t{Ht H+MtI/tAH 0DH=L$ML$BI,$E1/LL\$$HL\$$fDLL\$$($L\$hHL\$$L\$$WE1E1E1E1oA@H=I H" H5# IfDE1E1E1sAL$IH= I{@kL$IME1E1oAE11I*AA[LLD$L\$$LD$L\$$4fH=a 4I@I(LsAE11E1yMOM MGIII/fInfHnLǺflHt$0LL$L$)D$0OLL$L$II)LL$-L$@E1E1E1oAGMGM6MWIII/wfInfHnL׺flHt$0LD$L$)D$0LD$L$II(LL$L$@E1E1E1uAkI'E1E1E1pAwH= HZ H5[ IfDD$L $D$L $HLL$H4$H4$LL$+HLL$H4$H4$LL$MºuE1A VH= I%L$IIME1E1ۺpAHvH7H{HuAuD$LL$H $D$LL$H $xH,$E1E1E1xA,)IWHHt$LL$H $H $LL$Ht$})HLL$HL$H4$H4$HL$LL$VHvHH{HLLX?LLT$FLT$DDAH;`M kLǺLD$LD$HItLH;N @H;M @L;=>N  LI/LD$uA.xI(NLljT$E1H,$T$E1DDLkL^HLT$LD$GLT$LD$hDD=LLT$LT$,L LT$LD$eL`LL\$L\$HLD$L\$LD$L\$cLHD$LD$L\$L$0fDHFo.LqHD$)$ML$HD$xLHDŽ$HDŽ$E HD$ HNH L(hLE1AHƹAHD$xIH0H$HH|$xH/M HNv L$HD$xHDŽ$H*s H9PHs H`HH-r Hl$xHHEH5| HHHiIL$H|$xM&H/$ Hu Hr HD$xH9PHtr H{HL`r MI@LD$LH5$ HH,LD$IMII( HA I9EH H$LHDŽ$L$H$MHD$xHH2I)h H$H@ H9GHD$xH$HDŽ$H$TH$H|$xH/ H$HD$xHsH$H/ H$H;=A HDŽ$H;=@  H9 AŅH$H/ HDŽ$EMgH9\$ -HD$H HLpI9t M HPHuHLhHT$Ht HD$HMtIMtIEHVs H /p H9HHp HHH=p H$HHGH5~ HHHD$xL$HI(H|$x1HDŽ$H > H$H9OfHnD$)$dH$H$HtH/EH$H|$x{HDŽ$HH/HD$xH|$ AHD$xH`H$HHk~$HL$HDŽ$HDŽ$D$xHD$x@HtHHD$HHMt I.Mt ImHq H Vn H9HH=n HHL )n LL$xMCIAH5 LHHIL$H|$xMH/PH q Hm HD$xH9PHm HHL m LL$xMIAH5+{ LHHIH|$xMH/[H$1HD$xH \< H$H9OfHnfHnL$fl)$H|$xH$Ht H/HD$xImL$M H$H/4H$HDŽ$HL$HD$IEAuHDŽ$I} HD$H H|$ HD$0\ IGH5| LHHIL$MH9; I9FgMFMZIFIHH$H$H/H$H$L$LD$HDŽ$LD$H$I(L$MMH$H/H5` 1H$HDŽ$H$IHH$H/\H$H;=; HDŽ$H;= ; H9AƅH$H/HDŽ$E Hm H j H9HHpj HHL5\j L$MIFH5Xw LHHIMH$H/,H N9 H$1HDŽ$I9N$fHnfInLfl)$H$H$IHtH/HL$HDŽ$MI.wL$I9 HD$ I^fHDŽ$HHD$AXHsff/HD$(H5}v HIHQHD$8HD$(H5$v H؂LL$8HI>HDŽ$H8 I9@bI@H$HaMPHII(H$H$LLL$@LT$8H$HDŽ$tLT$8LL$@H$H$HtH/H$HDŽ$HI*H$H/LL$8HDŽ$H|$0LL$8HD$HHD$ HT$L|$hHHD$8LIHLl$PLl$HD$@HD$(LL$(HLt$XHl$`IH@Hb fHnMtgE1f.IM9tOCLBLT$LT$ff(YBL b fC.\\YzuHT$ HL$HT$8HD$8Hl$@TH9D$0^LL$(Ll$PLt$XHl$`L|$hH|$HLL$LL$H5 1L`LL$II)RMI(. HD$H\$HI/bL|$fDHiL=-p 1H)fHH93M;|uM@H\$fDDfDL>LqL$M~IL$H-{ HA 1HH9;I;luIHD$H H$I[fDLHD;fDL(fD PfDIG0LT$E1HD$Ll$MILMfDOtL9H5 H9EI9F } kA~ xHUI;VIFHuH9@H@t HDU EN DD@@8u{A AH}HA@HE|$A Iv0IHA@IDDAADDE9u&HH fIM9Ll$fH9uuI9uuLHIHtH;3 L;5m3 j I9a L9I.wLLT$MMLl$ySHDŽ$H AL HrMLLT$MLl$MO<@H|$ H$IH*H$HHH$HDŽ$HDŽ$HEH0LhHt$HfDH|$xE1E1AE11E1HD$E1E1Ht H/ H$Ht H/"H$Ht H/;Mt I(\Mt I)uMt I+~H 5DH=3Mt I/gE1MtImtHMtI.tMHtHmtQHL$H HHD$HHH&LfDLfDHfDL\$ LL$LD$L\$ LL$H$LD$L\$ LL$LD$L\$ LL$LD$L\$ LL$LD$|L\$ LL$LD$LL\$LL$NL\$LL$LL\$+L\$tLu1LIfDH\$(H5,m HyIHHH5l yIHEHDŽ$H. I9@I@H$HIXHHI(LH$H$HH$HDŽ$H=Se NH DDE1E1E1E1HD$AI:H=d ILHGH$HHWHHH|$xHT$xH/"H$H|$xH$HL\$0+L\$0LHGHD$xHHWHHH$H$H/HD$xH$H$H|$xE1E1E1E1HD$AL$^|DDfDkfD[fDI;fDL(@fDHE0HL$E1HD$ H\$LO|L9H H9EI9GUM} 8A BHUI;WIGHuH9@H@t HDU EO DD@@8usA H}HA  Iw0IHA@IDDAA?DDE9u(HHB@II9HD$hHlHHi H5L jAH H-H81A[[fDH;- uuL;= urLHIHcH; L;=- u L;=w > I/tHL$H\$HL$H\$Ot@L;LJH*L LpMHE0HL$E1HD$ H\$LM@N|L9*Hs H9EI9G} CA HUI;WIGHuH9@H@t HDU EO DD@@8u{A H}HA@HE|$ A Iw0IHA@IDDAAJDDE9u&Ht@HvfDIM9IH\$kfDIHL$H\$KDRLfDH5P H=T 1/HD$@IH1HWH|$@H/H|$H1E1HD$@AE1Ht H/H|$PHt H/}H|$XHt H/Ht H+H DʉH=bMtI,$E1Mt I.MuImjL]IH5^E HD5t Iɚ;\H5@ HDtHI9L9|$ ( HD$H; H7 H 3 H9H!H3 H HL%3 Ld$HM H5C L-HD$XIH} H|$HH/2H|$X1HD$HH  H$H9O!fHnD$)$跓H|$HHD$@HHtH/H\$@HD$HHY!H|$XH/HD$XH|$@H;= H;=^ H;= )Å#H|$@H/VHD$@HD$H C H9Hw'HHD$XH|$fHD$@IH9'HD$HIHw#HD$@H|$XLHD$@ID$ HD$@IH,#H|$XH/HD$XH|$HH/HD$HLd$@HD$@Ht5 H 1 H9H!H1 H!HL5p1 Lt$@MR!H5J L+HD$HHH"!H|$@H/UHD$@HD$@IHa!I$HD$@L`DHD$XIHT!H4 H 0 H9H%H0 HL"HL50 Lt$PM!"H5;@ L+HH"H|$PH//H5= H|$XHHD$P"H+pHT$XHt$@H|$H*IH"H|$HH/7HD$HH|$@H/6HD$@H|$XH/HD$XH|$cH5~F LF*HHd'H|$HD$XHH9'HHD$@H'H+P%H|$XH/N%HD$XH|$@݅HD$0H6%H|$@H/#HD$@L;5? &IFH5; HHD$8?o'Hl$H5< H"fIHHo'HH5< GIHD$XHH3'H H9GT'HoHG'HGHEHH|$XHD$XH/'H|$XH$H$HDŽ$HD$@Hm'H|$@&H|$XH/'HD$XH|$@H/{'HD$@FH|$LAPHt$@LL$@HLD$0HL$8HT$ 8HD$ H"+ H5#+ .HAGH={> vHARLI,$tq~A1E1E1ML@HM0LEHIDHH}HA@HE|$ WLL臾LzsAz0I*HD$PH5I@ L$HD$PIH=H5AC H輾HD$@HH|$PH/J HD$PH|$@H;=r H;=  H;=. AŅ<H|$@H/7 HD$@EH, H@H95) H ) HHL ) LT$PMH58 L#HD$HIHGH|$PH/H55 LHD$P"HD$PIH[H|$H1HD$XH  H$H9O=fHnfInHo, flH$)$覈H|$XHD$@Ht H/)HD$XH|$PH/!HD$PH|$@H|$HH/THD$HH|$@H;= AH;=9 D H;=~ v AŅH|$@H/HD$@EH+ H y' H9HH`' HHLL' LT$HMH51 Lg!HD$PIHmH|$HH/H5@ 1LHD$HHD$HIH7H}HD$XIHHL輻IHH|$XH/gH|$HLLT$(HD$X趾LT$(HHD$XhH|$HH/HD$HI*H|$PH H9GHD$XH$HDŽ$H$pHD$@H|$XH/HD$XH|$@H|$PH/HD$PH|$@H;= AH;= DuH;=i tH|$@AH/^HD$@EйLùH趹L詹L蜹蒹船a~?LqC1۽ AZfDL8xL#mJHD$@ϧHGHD$HHHWHHH|$PHT$PH/SHD$HH|$PH$1۽AA1E1E1脸zpHf!\H5? H= C 12HD$HIH1H'FH|$HH/ +A1E1HD$HA1E1E1\HʵDD 1۽=AL蕵LD$(脷D$(wHcLN~It$H1E1?AIwHLD$(D$(4AA1E1E1vLHȴHL$豻HL$H HڹHD$PIHH=*5 H躿HD$HIHH|$PH/? HD$HH=A H$HD$PHDŽ$H$jHD$PIHH|$HH/HD$HH|$P1CH|$PH/VA1E1HD$PE19IwH%H}H蘺HqhA1E1E1H=3 H1! H52! MIH|$@MkAfHt H/{H|$XHD$@Ht H/HD$XMt I*H|$HHt H/ HD$HH|$PHt H/HD$L-? HD$PHxXI9H=IEHxHWJ@=2A@$HXHHJH1fHH9L;luH ÛDʉH=DH|$HL$XHT$PHt$@%\H|$@Ht H/ HD$@H|$PHt H/HD$PH|$XHt H/HD$LHLHD$XHrCH賶HD$XIHxH= + H蓼HD$PIH@H|$XH/2 HD$PH== H$HD$XHDŽ$H$gHD$XIH H|$PH/uHD$PH|$X1@H|$XH/GM֩A 1HD$XE1E1HI9YHuL;-) GHD$LHLDL$M1E1HE19BDL$LDL$2DL$DL$LT$DL$LT$LDL$DL$DL$DL$DL$бDL$DL$LT$跱H|$XDL$LT$gDA DDmH=/ 辁IH|$XMmAE1VHGHD$HHHWHHH|$@HT$@H/HD$HH|$@H$M「ALذbΰİ躰谰趹IH|$@A9DD wmci1E1MAHD$HAD$HD$H=. H H5 ISL˶HD$H|$@Ld$HdD\DD1E1MA)躸I$EH= . IIVH1@HH9I;|uBH CAH]H;c yL׺踯IHH; AH; DL;G LLT$(ĴLT$(AI*vEx%LT$PI*t2HD$PEP{H|$@AE10Lx1E1MA,Q4H|$H1E1MADDIUH1HH9 I;|uH=h, Ha H5b 轀IMA1E1E141E1MAL蚭1E1'A.1۽%A.gH=% wIH=% H H5 zIH|$@ AE1H|$@,AH|$@*AH=`% 3wI'H=L% He H5f yI账M誦+1۽NAHGHD$XHHWHHH|$HHT$HH/5HD$XLT$PH$H|$Hp1E1QAE1E1A.<H|$@/AHGHD$HH HWHHH|$XHT$XH/pHD$HH|$XH$譥H|$XA@莥H聥wH|$@2A H|$@0AC$9/AK1E1MѩA |1E1MƩA d1E1MALͤA2H|$H1۽A2H=# tIuH=" H H5 SwISH|$@4AH|$H1۽A21۽A2H|$@OAE1LoMmHGIEHH|$PHD$PH/HD$XH|$PH$L$H$oHD$@Im@L裣3@A.1E1E11E1~AlboH|$H1E1sA11۽nA111۽A2H=! csIH@`H:HH*LIHH I9D$u%LdI,$HD$L襢LH5 IHuE1A2A2E1Y5AD!A1E1E1'1۽A2 H|$H1E1 A-\1۽ A- A1E1E14{*YDAWH fAVfHnAUATUHH SHHL-{ L% H|$HH-)$fHnfHnHP flHHDŽ$fHn)$H fHnflL$H$Hw )$fHnflHD$`H$L$)$H L4HHϒHcHf.HF H$HFH$HFH$L~HLmL$H$HHHcHHLmH$ML% M1f.HL9L;duMLH讏IH/H; L;% u L;%C - I,$LH\$Ll$蝓Hq I f.H$LHHJMIH$H$H$L$L$HD$PH$L$HD$`HLT$LT$HLD$LD$fI(# H H- H9XU%H Hm&HL M$IBLT$LH5 HH%LT$HH%I*wH|$XH5 HGHHB'HH&HJ H9C5(H HIH$H$HDŽ$H$XIHmMt'I/L;E L; u L;  I(2 L;5 e"I~ BHH: IH@L0H|$HH5 HGHHF$IM#LLD$LD$HI$I(I&H|$XH5 HGHHr'IMq'LLD$_LD$HH'I(k!HH5  H=; 1dIH 1HHD$YLL$I)1AЛA5HD$01E1E1HD$(E1E1HD$8HD$ HD$HD$HD$HD$@lLLD$ӊLD$fL$iHLL$P裊LL$PufL舊nHx}Hh[fDHHH8+fDHHLLH؉LHT$`LL$P辉HT$`LL$PGHLL$P蛉LL$P8H舉*HxLhgLXLHH8I/*L&ID$0Ll$E1IHD$ LH\$LOdL92H H9CI9D${ rA|$ ~HSI;T$ID$HsH9@H@t HDS EL$ DD@@8u~A tH{HA@HE|$ A LIt$0IHA@IDDAA DDE9u(HtBHF!IL9LH\$Ll$LH\$Ll$Kf.Ll$E1IID$0H\$LOdLHD$ L9-fH H9CI9D$*"{  A|$ , HSI;T$ID$HsH9@H@t HDS EL$ DD@@8u|A  H{HA@HE|$ A  It$0IHA@IDDA`ADDE9u&Ht;HĉfDII9OdL9LH\$Ll$O<H; uuL;%t uuLH螆IHtPH;w L;% u L;%7 aI,$ [LH\$Ll$nHDŽ$腊H*HH9 AH5|:jL mH \mH8Ho1裍_AXfDL8 HH mHmAHMEOD@`H5y H= 1HH!1HHmAA)L踄H=! H* H5+ vWHfDHD$PL|$X1E1HD$0E1E11HD$(E1AlA$HD$8HD$ HD$HD$HD$HD$@HD$HL mILHH$H$Kޙ`fHD$PL|$X1E1HD$0E1E1E1HD$(E1AnA$HD$8HD$ HD$HD$HD$HD$@HD$H@HtH+tEMI*LL\$hHT$`LL$P#L\$hHT$`LL$PHL\$pHT$hLL$`LT$PL\$pHT$hLL$`LT$PfDۋHWH=1 SH@H萈HmC HD$PL|$XMA<HD$HAHD$01E11HD$(E1E11HD$8E1E1HD$ HD$HD$HD$HD$@MI(LL\$pHT$hLL$`LT$PL\$pHT$hLL$`LT$PpI|$HxfDL蘇LLD$胇LD$AA(LXLXHHH8IәH!JHD$01E1E1HD$(E1E1A^HD$8A.HD$ HD$HD$HD$HD$@>HD$01E1E1HD$(E1A̛A5HD$8HD$ HD$HD$HD$HD$@H5 ILHD$PML|$XABHD$HHD$PL|$X1E1HD$0E1E11HD$(E1AA$HD$8HD$ HD$HD$HD$HD$@HD$HKH]H;LUHIHm[fHnL׺LT$D$PH$)$@KH+LT$HD$HHLT$LT$DL|$X1E1E1HD$0E1E11HD$(AA%HD$8HD$ HD$HD$HD$HD$@+fH= H H5 fQIfDL|$X1E1E1HD$0E1E1AHD$(A%HD$8HD$ HD$HD$HD$HD$@@H=y LNIE@LT$HefDLEMvH]IHHmfInfInHflH$LD$)$ILD$HD$XI(LLh}?L|$X1E1E1HD$0E1E11HD$(E1AA%HD$8HD$ HD$HD$HD$HD$@L||Lz 8Hz H= H H5 nOHfDHD$01E11HD$(E1E1E1HD$8AA'HD$ HD$HD$HD$HD$@L|HuHHLD${LD$fۄIHD$01E11HD$(E1E1E1HD$8AA'HD$ HD$HD$HD$HD$@H= KHk@LD$(,{D$(TLLD${LD$EfLD$(zD$((H̙WۃLT$H[fDHD$01E1E1HD$(E1E1AHD$8A'HD$ HD$HD$HD$HD$@H8x~hL xrPHxeLwMIt$HfDH{HM1E1E1HD$0E1E11HD$(AКA'HD$8HD$ HD$HD$HD$HD$@@IZH MzHII*jH fHnLfHnflH$H$)$EH+IHLD$xLD$It$H%fDH{HH5y H|$XwH111HHD$ LD$HHUI(H51 H|$X/H11ҾHHD$ LD$HII(eLֺHLT$xLT$HI) H+I*L;l L; oL;( bLLD$}LD$jI( H5U H|$HSH 111HHD$ LD$HII(RH5 H|$XLT$LT$H111HLT$HD$P LD$LT$HH.I(L׺HLT${wLT$HII*BH+!L;7 L;  L;  LLD$p|LD$bI(aHE111jL 1HY^IH8H I9A,I9"H5 H|$HLL$LL$HHa111H#LL$HIH+IQ IAHHH9H9IIQLHIAI(H5 H|$LL$DLL$HHD$@H-Hw H9CLsMLSIIHHD$HHfInfInL׺flH$LL$LT$)$@I.LT$LL$HHI*H5 HLL$|LL$HI,H+HH5R H|$HLL$LT$FLT$LL$HH111HLL$LT$LT$LL$HHD$H+H? I9B\MrMOIZIHI*[HS HLL$H$L$H$HD$H$?I.LL$HD$@dHL$HHD$HHH|$@: H+H5 H|$XLL$*LL$HIg Hr H H9Xy!Hr HA!HL^ M H5 LLL$ LT$L\$L\$LT$HHD$LL$ K I+ H I9B'MrMIZIHI*9fInƺHLL$D$H$)$h>I.LL$HD$PIHL$HHD$HHH|$P|!H+H\$XHHD$HHH53 LLL$LL$ oLL$HI)H LLL$LD$HI@H HH=~ 1LD$LL$HI)I(< H5 LLL$LT$LT$LL$HHD$ %H8I*HD$H> HH9X+H\$HD$PH$LL$HH$HDŽ$E1HD$ HD$HD$HD$HD$@AA6H5 H= 1IH1HHD$ALL$A7I)uLAA7^\HLL$^LL$H{^LL$LT$FHLL$_^LL$HLL$H^LL$Lt$@H$L$LL$HDŽ$L *LL$MH(HD$01E1E1HD$(E1AA=HD$8HD$ HD$HD$HD$HD$@ LLL$]LL$HD$01E1E1HD$(E1E1AHD$8A4HD$ HD$HD$HD$HD$@H5 LLL$LL$ZLL$HIH LLL$LT$HIBH HH= 1LT$LL$HI0I** H5O LLL$L\$L\$LL$HHD$83H8 I+HD$8HM HH9XuH\$8HD$PH$LL$HH$HDŽ$'LL$IIMI*8ICH; ISH4/ICHD$IC HD$HD$HHD$HI+HD$0HD$(HD$ HD$HLL$F[LL$LLL$/[LL$HD$01E1E1HD$(E1E1E1HD$8AA4HD$ HD$HD$HD$HD$@LLL$LT$ZLL$LT$HD$01E1E1HD$(E1AA>HD$8HD$ HD$HD$HD$HD$@L$ZHLL$ZLL$HLL$YLL$HD$01E1E1HD$(E1E1A!HD$8A>HD$ HD$HD$HD$HD$@2HD$01E1E1HD$(E1E1E1HD$8AA4HD$ HD$HD$HD$HD$@HD$01E1E1HD$(E1E1AHD$8A4HD$ HD$HD$HD$HD$@H L׺H$LL$H$HD$LT$HDŽ$H$r$LT$LL$HD$@LLLL$NXLL$E1PASHD$01E1E1HD$(E1A.A?HD$8HD$ HD$HD$HD$_HD$01E1E1HD$(E1E1AHD$8A4HD$ HD$HD$HD$HD$@HD$01E1E1HD$(E1AFA?HD$8HD$ HD$HD$HD$HD$@LLL$VLL$HD$01E1E1HD$(E1ABA?HD$8HD$ HD$HD$HD$HD$@CHD$L׺H$LL$LT$HDŽ$H$X"LT$LL$HD$PLHD$01E1E1HD$(E1AIA?HD$8HD$ HD$HD$HD$HD$@LL$SLL$HIAH LLL$L\$HICH HH=x 1L\$LL$HH I+6H5 HLL$LL$HHD$(/!H8l H+/ HD$(HB HH9X'H\$(HD$PH$LL$HH$HDŽ$ LL$IHD$H|$'I+* HD$8HD$HD$ HD$0HD$HD$HD$=HD$01E1E1HD$(E1AKA?HD$8HD$ HD$HD$HD$@HD$PL|$XM1HD$0E1E11HD$(E1E1E1HD$8A<AHD$ HD$HD$HD$HD$@HD$HHD$01E1E1HD$(E1AA3HD$8HD$ HD$HD$HD$HD$@ɿHD$01E1IHD$(E1E1AaHD$8A?HD$ HD$HD$HD$HD$01E1E1HD$(E1AoAPHD$8HD$ HD$HD$HD$HD$01E1E1HD$(AsAPHD$8HD$ HD$HD$HD$01E1E1HD$(AqAPHD$8HD$ HD$HD$HD$H=Q LL$LT$"LT$LL$IH=) H LL$H5 LT$t$LL$LT$IlLLL$LT$pQLL$LT$LLL$TQLL$ HBQLL$LT$LHD$&QLL$LT$HD$PAAQHD$XHD$01E1E1HD$(E1HD$8HD$ HD$HD$HD$;HD$01E1IHD$(E1E1AHD$8APHD$ HD$HD$HD$LLL$HD$BPL\$LL$LLL$&PLL$LLL$XPLL$XHD$0HD$(HD$8H5 LLL$XLL$X H|$H۾ H H9XH HlHLw M5H5 LLL$`LD$X-LD$XLL$`HII(H|$ H\$H H9C HCH HIH I9CwLLL$`H$L\$XHDŽ$L$L\$XLL$`HMImHI,$H|$HLL$`HT$XNHT$XLL$`HIgH*HLL$XPNLL$XHD$01E1E1HD$(E1AA7HD$8HD$ HD$HD$HD$HD$@kH; HH HHHҷ HH5 HLL$XmLL$XHIH+H|$LD$hH|$`LL$X"KLL$XLD$hHH)H|$1HLD$`MLL$XLD$`HIH+/H1 I9@LLL$`H$LD$XHDŽ$L$LD$XLL$`HLI. HH)H;( H; H; HLL$`HT$X\RHT$XLL$`ZH*9.HLj HIGHD$P1E1E1HD$0E1AARHD$(HD$8HD$ HD$HD$HD$XLLL$XKHD$0LL$XHD$(HD$ HD$\HD$PAHD$XA_1E1E1E1HD$PA֝HD$XA^1E1E1E1ٷLLL$CKLL$HL\$LL$'KL\$LL$H HH; IH5 LLL$XLL$X! H HӴ H9Xi H H; HH H H5 HLL$`HT$XLHT$XLL$`HIH*H5 1LLL$`LD$X1LD$XLL$`HI5I(dIm*LLL$X JLL$XHLL$ILL$HHD$hIL\$hLL$XHILL$ZHHD$hILD$hLL$XHD$PA1E1AmE1HD$XHD$PAATHD$XWHD$P1E1E1HD$0A*AUHD$(HD$8HD$ HD$HD$HD$HD$XHD$P1E1E1HD$0E1A%AUHD$(HD$8HD$ HD$HD$HD$HD$XLL\$LL$HL\$LL$HD$PAНHD$XHD$P1E11HD$0E1E1AHD$(ARHD$8HD$ HD$HD$HD$HD$XHD$P1E1E1HD$0E1AARHD$(HD$8HD$ HD$HD$HD$HD$XLLL$GLL$H;ل 7 LLL$LT$NLT$LL$HHI*HBLL$HHT$LAHT$LL$HIOHHD$ AHT$LL$HLD$ H_LD$(HAHT$LL$HHD$ LD$(1HAHT$LL$HLD$(HLD$(HT$LL$5LD$(HT$LL$^H*H\$LD$HD$P1E11HD$0E1E1AʜHD$(ASHD$8HD$ HD$HD$HD$XLpHML@IIHHD$HHfInLǺLL$D$PH$LD$)$I.LD$LL$ILLD$ LL$LT$gELD$ LL$LT$HD$P1E1E1HD$0AAYHD$(HD$8HD$ HD$HD$HD$HD$XzH|$;H HǮ H9XH HHH HH5 HLL$`HT$X`HT$XLL$`HIDH*H|$H} I9@HD$LǺH$LL$`LD$XHDŽ$H$LD$XLL$`IMMI,$`H|$LLL$`L\$XPDL\$XLL$`HII+LLL$XCLL$XHGHHH,H <*LL$hHEH H5 LT$`H81KHD$PLT$`1E1HD$0E1E1LL$hHD$XAԜASHD$(HD$8HD$ HD$HD$髿H5 H= 1ӨLL$XHI1HI.LL$XKHD$PA1E1A`E1E1HD$XLLL$XBLL$XdHD$P1E1E1HD$0AAYHD$(HD$8HD$ HD$HD$HD$HD$X飮LLL$XHD$`BL\$`LL$XLLL$@ALL$@7HD$PH\$@1E1AAxE11HD$X騿HLL$XALL$XHD$PH\$@1E1AAxHD$XHD$P1E1A{AwHD$XH~ H[/LL$`E1H5oAAnH81yIHD$P1E1LL$`HD$X陭HD$PL\$ AASHD$XHD$0E1E1E1HD$(HD$8HD$ HD$HD$顾HT$LL$LL$HT$LD$(AH*LD$LL$LL$LD$^IH(LLD$hH &H5LL$`AHEASE1E1H{ H81[HHD$P1E1HD$0LL$`E1HD$XLD$hHD$(HD$8HD$ HD$HD$餽HD$PAԜ1E1HD$0E1E1ASHD$XHD$(HD$8HD$ HD$HD$ Hz LL$hH58LT$`H81GHD$PAHD$XHD$P1AAwHD$X郫HD$PA1E1ASHD$XHLD$LL$>LD$LL$@1E1,LLL$HD$>HT$LL$UHD$PE1E1E1HD$0AASHD$(HD$8HD$ HD$HD$HD$XIRH}IBHH\$HXH@H\$HD$ HD$P1E1E1HD$0ANAWHD$(HD$ HD$HD$HD$HD$X]LpHM{LPIIHHD$HHofInL׺LL$D$PH$LT$)$H I.LT$LL$IULL\$LL$LT$=L\$LL$LT$*H;gz LLL$L\$wDL\$LL$HIxI+MI@LL$LLD$HLD$LL$HINLL$ LHD$LD$LT$HHD$LL$ %LLD$LT$LL$ HHLD$ LL$LT$LD$ LL$LT$x\I(t5LT$LL$@HLL$LT$;LT$LL$pLLT$LL$X;LT$LT$HD$PH\$1E1HD$0E1E1AuHD$XAWHD$(HD$ HD$HD$HD$WMLT$LL$LD$ !E1I(LL$LT$ݬLT$LL$CIH#LLL$hH !H5RLT$`A}HEAWE1E1Hv H81CHD$P1E1HD$0LT$`HD$XLL$hHD$(HD$ HD$HD$HD$-LLL$HD$h:LD$LL$HD$P1E1E1HD$0AmAWHD$(HD$ HD$HD$HD$HD$X鉦ISH| ICHH@H\$HD$@HD$PA}1E1HD$0E1E1AWHD$XHD$(HD$ HD$HD$HD$/LLL$LT$j9LL$LT$HD$P11E1A"AcHD$X)HD$`1E1E1Hv H!H5GA!AcH81QAHD$PLT$`1LL$hL\$pHD$XLD$x̶HD$P11E1E1AAcHD$X駶Hv 1E1E1Hq"H5LL$`AH81Ac@HD$P1E1LL$`L\$hHD$XLD$pLLL\$hLL$XHD$pE8LD$pL\$hLL$XHD$P1E1E1AAcHD$XHD$P1E1E1AAcHD$XtH=\ L\$hLL$X%LL$XL\$hIHHT$`LL$X7HT$`LL$XHt 1E1E1H H5LL$`AhH81Ae?HD$P1E1LL$`LD$hE1HD$X9HD$P1E1E1E1AkAeHD$XHD$P1E1E1E1E1AiAeHD$XHD$P1E1E1E1E1AeAeHD$XyHD$P1E1E1E1AcAeHD$X4H= LL$XLL$XHH= H LL$XH5 N LL$XHHD$P1E1E1E1AAcHD$XHD$P1E1E1E1AAcHD$X鞢HLL$X6LL$XHD$PE1E1E1AAeHD$XcHD$PE1E11IE1E1AHD$XAe鞳LHL$hHT$`LL$X5HL$hHT$`LL$XMxMoIHIHI(fInfInǺHflH$LL$`HL$X)$+I/HL$XLL$`HPLHL$hHT$`LL$X4HL$hHT$`LL$X%H4LD$`LL$XLHL$`LL$X4LL$XHL$`QHLD$LL$4LL$LD$HD$P1E11A}AwHD$X^LLL$`E1E1[4HD$P1E1LL$`AA`HD$X鿠HD$P1E1E1AA`HD$X霠HD$P1E1E1HD$0E1E1AHD$8AYHD$ HD$HD$HD$HD$X\HD$P1AlAuHD$X LL\$`LL$X3L\$`LL$XHD$PM1E11E1AhAuHD$X>MhMM`IEI$I(fInźLLL$XD$H$)$ImLL$XILL\$`LL$X2L\$`LL$XLD$h1E1AUHp LL$`HH5AuH81:HD$P1E1LL$`LD$hE1HD$X^LLL$Xa2LL$X.HLL$XHD$`E2LD$`LL$XHD$PE1E1ARAuHD$X鞞HD$PE1E1APAuHD$X}H=e LL$X3LL$XH$H=G H LL$XH5 LL$XHHo HoLL$`E1H5AOAuH819HD$P1E1LL$`HD$XHLL$XLD$L1H\$LL$XHD$0HD$(HD$8HD$PA 1E1AoE1HD$X鈝H=p H LL$XH5 LL$XITH,n HLL$`E1H5AAsH818HD$P1E1LL$`HD$XLLL$XHD$`u0L\$`LL$X)HD$P1E11E1AAsHD$X1HD$P1E1E1AAsHD$X駜H= LL$X]LL$XIHD$PE1A7AsHD$XkLHT$`LL$X/HT$`LL$X-HD$PME1A3AsHD$X)LHT$`LL$X/HT$`LL$XM{M|McII$I+fInfInǺLflH$LL$X)$+I/LL$XHfLHT$`LL$X/HT$`LL$XEHL\$`LL$XuWHD$x5LL$XL\$`IMHD$P1AAsHD$X1LLL$X.LL$X6H|$g0LL$XL\$`HItHXeH|$L\$`LL$X.L\$`LL$XIxHk HL\$hH5\LL$`E1AAsH81^6HD$PLL$`1L\$hHD$X|H=d H L\$hH5 LL$XL\$hLL$XILLL$X-LL$XHD$P1E1E1HD$0AAZHD$8HD$ HD$HD$HD$XߙLpHM2LXIIHHD$HHfInLߺLL$D$PH$L\$)$I.L\$HD$LL$ LL\$LL$,L\$LL$H=+ LL$XLL$XHXHD$PA 1E1AbE1E1HD$XHJHHHH L\$hHEHg H5LL$`H81{4HD$PLL$`1E1HD$0L\$hE1AXHD$XAWHD$(HD$ HD$HD$HD$QH=9 H LL$XH5 LL$XHXHL\$LL$+LL$L\$VHD$PAX1E1HD$0AWE1HD$XHD$(HD$ HD$HD$HD$髗Hf L\$hH5LL$`H81K3HD$P1E1E11AAhHD$XHLL$XHD$`*LD$`LL$XTHD$PE1E1AAhHD$XHD$PE1E1AAhHD$XH= LL$XLL$XHH= HJ LL$XH5F LL$XHH5Ű H=ִ 1LL$XLL$XHI1HImLL$XtFHD$PAў1E1AkE1HD$XIHD$PA1E1AgE1HD$X&LLL$`AўE1)HD$P1E1LL$`AkHD$XHD$P1E1A͞AkHD$XѕHD$P1E1E1HD$0A-AUHD$(HD$ HD$HD$HD$HD$XxHD$PA1E1AfE1HD$XUмHLL$X(LL$XvLLL$X(LL$XULLL$X(LD$`LL$X/HD$P1E1E1AIAcHD$XGHD$PAHHD$XAc1E1E1E1!HD$PAGHD$XHD$P1E1E1E1AEAcHD$XHD$P1E1E1E1A=AcHD$X{HL\$hLL$X'L\$hLL$XKHD$P1E1IE1E1A9AcHD$XyLHL$pL\$hLL$Xr'HL$pL\$hLL$XMxMsIHIHI(HD$ fInfInHflǺL\$pH$LL$hHL$XH$)$I/HL$XLL$hL\$pHTLHL$pL\$hLL$X&HL$pL\$hLL$X)LLD$pL\$hLL$X&LD$pL\$hLL$X铸LHL$pL\$hLL$Xk&LL$XL\$hHL$pAWHO AVAUATUSHHHD$PH@HD$XHHD$`HxHD$hHjb H|$HD$0HD$8HD$@HD$pHD$HHL,H HHHcHfHFHD$HHFHD$@HFLEHD$8HHD$0HH%HMHL% M1HL9{L;duIDHD$8HL}IL% M& 1DHL9 L;duIDHD$@H IML}L% M11@HI93L;duIDHHD$HIM~@HL$0HT$PILL Hy@HuMuHD$HLl$0L|$8Hl$@HD$HX L(hE111HALAIHH8H L(hE111HALAIHH8EHί H(hE111HAHHH;H8 AFA;D$Hs H  H9HH HHL- MIEH5 LHH0HH2ImO ?f(L$%IHHLD#IH2Im-H] H9EZHt$XHLD$XLD$ HD$PWLD$ III(MI)L;=^ L;=&^ L;=l^ L'ŅD$)E11D$f.H.HHH H AHMEIHHG] H5 H5SL H81)XTZH  H=E1}HĈL[]A\A]A^A_H(!AHFHD$HD$HHnoL~L.Hl$@)\$0@HLAHD$0`LAH՞ LHLD$HD$0HLD$L}I>DHD$|fDL LLL$ k LL$ LHD$ S LD$ fI/KHT H H9HHԉ HqHH- HZHEH5 HHHIMHmD$"HHHL1 IHHmHZ I9GHt$XLHD$PLl$XIMHImH\I(}H;-[ AH;-[ DGH;-`[ :H$AŅpHmE H H H9HHl HHL=X MIGH5 LHHIIIHMIHH H H9H}H HHH-͇ HAHEH5 HHHrHHHmH H=w H9x*H^ HcHLJ MICHL$ LL\$H59 HH{L\$HL$ IMNI+.HxX I9@wLHt$XHL$ LD$HD$PLd$XLt$`LD$HL$ ILMHmHX H9AHHt$XL\$XL\$ HL$HD$PH\$`HL$L\$ HII+HI/HW I9EHt$XLHD$PHl$X]MIHmMI)L;=X L;=0X  L;=vX  L!ŅI/E+HD$HH= X MLHpILL Й j5H Sj5 AVjHT$P HH@HII/LHD$yHT$L`,HP;CLIHZLIHpHuIHf\I*T$f/fI*f/D$KD=I9[HD$LLD$ HHHL$HL$HILHD$(HL$L\$(HHLD$ LHL$L\$(HIHt$HE1H=XV jA5 HPj5ݗ Uj5 ASHT$`L\$hHL$XM HPHL$L\$HHH) I+ Hm Im I,$tDI.ItifH+9H~,fHh 1LHT$QHT$IMtI.tHu@L(fDID$0LD$1HD$ H\$LMI̐NtM9HV I9GI9FUMA j A~ w IWI;VIFIwH@H9@t HEW EN DD@@8urA `IHA " Iv0IHA@IDDA AM DDE9u'HHQII9HD$@H1HHyS H H5jL AHJH81Y^4L;=S uuL;5S urLLIHcH;S L;5=S u L;5S I.LD$H\$LDLD$H\$LIDfMID$0LD$1HD$ H\$LMI̐NtM9HS I9GI9FUMA A~ $IWI;VIFIwH9@H@t HEW EN DD@@8urA %IHA JIv0IHA@IDDA A DDE9u'HHII9HD$8eHHHQ AH5\jL H <H8H1_*AXfDL;=yQ uuL;5lQ urLLIHcH;gQ L;5P u L;5'Q I.<LD$H\$LDLD$H\$LIDJfID$0LD$1HD$ H\$HLMIfDNtM9H[Q I9GI9F A A~ IWI;VIFIwH@H9@t HEW EN DD@@8uzA fIHA@HE|$ A EIv0IHA@IDDAd Ax DDE9u%HHIL9HH\$fDL;=iO uuL;5\O uuLLIHtH;_O L;5N L;5O LI.lkHLD$H\$Ly/rH;HLD$H\$LIDfDD$1E1E1D$E11E1E1Ht HmMt ImMtI/tgMt I+MtI(t=T$t$H lH=MpI,$NE1]fDLfDLL\$ LD$~L\$ LD$xLLD$[LD$iHL\$ LD$>L\$ LD$LL\$ LD$L\$ LD$D$1E1E1D$1D$IHx H= HIH'I/P H=] Ht$XLl$XHD$PUHHWImN 1HdHm, D$*E1E11D$@L0D$E1E11D$ÖLIHA@HE|$ DLIHA@HE|$ ELv2)(D$*1D$HLD$(dD$(GL@ `L( yHIvHH= Hx H5x IfDD$)E11D$fDH HD$)E1D$pH= Ie@LD$(lD$(LXJL0 L LHT$HT$^HHT$ HT$IHHMHHWH4 I9A)LHt$XLL$HD$PLd$XLl$`LL$ILMH)HH4 I9GKHt$XLLHD$PLt$X7II.Iߺ A<MH+L;5 L;5 L;F5  LLT$LT$+I*)HD$HH=4 MLHpIL m LjAQAUjAQUjHT$PLT$H H@LT$HI1I*LBDH&HHH HAHMEIHH3 HH5SL WH81'XZH g: H=EE1HĈL[]A\A]A^A_H0HFHD$HD$HLvo&H^L>Lt$@)d$0@HLAHD$0PLAHs LHLD$HD$0HLD$L}I.DHD$|fDLHLL$LL$HGA` H+6HLL$T$LL$T$LːMt I/ Ht H+H DH=I,$A+Ht HmM}ImrLef.HA;E*"Lf.V]f(BLL$ f.6]L$ D$YHL$ ~f.]L$ f(ff/f/T$4f.L$Lt$f(T$ IHHL$PHL$HI=T$ HD$(f(+HL$LL$(HID$LL$ HL$LL$ HHHj HL5+1 jHAPH=0 SjPAWjPHT$`LL$hHL$X HPHL$LL$HIH) I)z I/ H+ I,$t0HmDH8H(ILID$0LD$1HD$ H\$LMI̐NtM9H1 I9GI9FUMA A~ IWI;VIFIwH@H9@t HEW EN DD@@8urA IHA Iv0IHA@IDDA A2 DDE9u'HHAII9HD$@HHHi. H H5jL AHbH81Y^L;=. uuL;5. urLLIHcH;. L;5-. u L;5w. I.LD$H\$LDLD$H\$LIDbfH߉T$T$9MID$0LD$1HD$ H\$LMI̐NtM9H. I9GI9FUMA A~ IWI;VIFIwH9@H@t HEW EN DD@@8urA uIHA Iv0IHA@IDDA< A DDE9u'HHII9HD$85H8HH+ AH5,jL H H8H1S_AX&fDL;=I, uuL;5<, urLLbIHcH;7, L;5+ u L;5+ 1I.LD$H\$LDLD$H\$LIDfID$0LD$1HD$ H\$HLMIfDNtM9H+, I9GI9F A  A~ IWI;VIFIwH@H9@t HEW EN DD@@8uzA IHA@HE|$ A Iv0IHA@IDDAA DDE9u%HH_IL9HH\$fDL;=9* uuL;5,* uuLLVIHtH;/* L;5) L;5) LmI.kHLD$H\$Ly/BHIoHLD$H\$LIDfDLLT$ LT$E1Ah {DHLT$LT$Aw NH W~ YE1H=-лLLpmIHA@HE|$ !DLHIHA@HE|$ |LLT$#LT$W AMI*L׉T$T$DH H=mSLMGMKI_IHI/v fInfInHt$PHflǺLD$)D$PvLD$II(LLT$WLT$ A$L5H=i HS H5S H4*f.LD$(D$(LL LLL$LL$@LT$T$IvHEAY H=h H:S H5;S IfDHLL$LL$OH=h TIc@ A[LiDLL$IkfDLD$(D$(/LqKLg6HLL$|LL$LLT$eLT$H A^1fH=g HR H5R HIvHkHLT$LT$ DDLyHLL$LL$XHiLRIH=g HuLD$(D$( IYHIIHHI)fInfHnHϺflHt$PHL$Hl$`)D$P+H+HL$IHHL$ HL$s Au1H)[HωT$T$F LLIvHSIH0D$qL$HA fDDL$ 2L$ HA L$ D$(L$ T$(HnA r@DDH5m H=q 1LIH1HAċtI/ !LT$T$ H5l H=0q 1YLIHW1HAMtI/ H5l H=p 1LIH51HA tI/ dA uH=Xd HN H5N 譸I5[H5l H=qp 1KIH1HAsI/  DDCHLL$`LL$H=c 蚵I A1;IHLLT$ LT$DDf A!LE1 AH==c HM LL$H5M 荷LL$HH AHHLT$nLT$[1A+ I)XLHL$T$IUM8IMHD$HLl$8L|$@H$H=M L|$XHD$PH5M HWH9L~ L9LXMMQM~$1fILH9L9HI9uHt$X1 HB8HHHHHL H=JF H9xH1F Hx HL5F MIFH5W LHH6 IIHMIHLHIH I/oL;5 L;5 I9LADžw I.EH\$HMH=) ALHsIHQ LHa t$jRPjRLPj5L^ g IHPH I.HmHI@IuLM~PHML%[ H1DHH9cL;duIHpHD$HIMlLd$0bH 4HHH$LnL&Ll$8Ld$08fDHHFH$HD$HL~L|$@fDL&LALd$0LAH] LHL$HD$0IHb L$IL&H$ILd$0@H AL jHH HH5AVH81X}ZH _ H=mE1ݩHĈL[]A\A]A^A_H\ LHL$JL$HI HD$8IMHML% S H>1 HH93L;duIHHD$@IH9uI9uLHIHH;[ L;- u I9yIm;LLD$Lt$ML<$[rH_HL$0HT$PMLL BHcmy}I.D]L*EUHJH H A H9HqHA HHL=vA M5IGH5rR LHHIIHMIHLH6IHI.L;= L;=w I9LCAƅ I/EHD$MH= LLHpILL Y 4$jWc Y^IH I/L~f.6HfDLnLDGH@HH9tfHMfDLLLvHLILt$8HD$0fDD7MH HMHII?IAH@HH9t4HuH 8 H9t#HHL9tHuI9ffDHOAQHiE1 uLH=tuBLLHHQHuH H5tH8 fH {E1H=œLd$0Ll$@AfID$0LL$E1HD$ Ll$IHOtM9H I9D$I9F A|$ PA~ ]IT$I;VIFIt$H9@H@t HET$ EN DD@@8u}A #I|$HA@HE|$ A Iv0IHA@IDDA0AdDDE9u'HHIL9LLl$fDI9uuI9uuLLIHtH; L;5 JI9ALI.wLLL$Ll$y+H{fDLLL$Ll$HD$JDH= C H- H5- ^IfDA{A@DDE1H H=9tL0H=B lI@A{AI/uL@IzLIHE HHLL$yLL$HIHD$0I%f.AA{I. LbDLP{Ht$HL$0MHHT$PL M{EDID$0LL$E1HD$ Ll$IHOtM9H I9D$I9F,$A|$ mA~ wIT$I;VIFIt$H9@H@t HET$ EN DD@@8A I|$HA@HE|$ A Iv0IHA@IDDAADDE9umHH-uMLLL$Ll$ylLL$LL$H{DI9uu I9urtnIL9LLL$Ll$f.LLL$Ll$HD$N4"DA{A+L LLIHtH;L;5upI9tkLI.y>@A|A+LL$LL$H+}{DLD$,dD$,lA{ACA |AH=> H( H5( IfDLLнpIvH I|$HfDH=!> I^@AA |IaA|A[LD$,LD$,rL+LyfH=3 H9HEt H;HIHH={I Ht$XL|$XHD$PsIHI/t}1LA>|ALI.!DDIvHPI|$H,AA|DDFDDDD,LvHIH1A7|AA9|AH x7|E1H=ff.AWH8 AVfHnAUATIUSHHfHnflHxL-fB L5oB HD$`HH|$HD$hLl$0Lt$8HD$@)D$PHhHL M[ 1DHI9K L;luIH1 HD$@H,@HHFLvL.HIHD$@Lt$8Ll$0H Ll$0Lt$8H\$@HQH H(hE111HALIH H8lH H H(hE111HALHHj H8EA;D$*H* H # H9H*H# HHL=# M.IGH5K> LHHIIHM+IHoH(I9@LHt$XLD$HD$PHl$XLd$`ԆLD$IMMI/6HF IL0IHH8LH) H " H9HH" H4HL " MIALL$LH5/ HHLL$IMI)H9) H 2" H9HH" HHL" MI@L\$LLD$H55 HHLD$L\$IIHMIHi HI9GHt$XLL\$HD$PLl$XKL\$MIMwI( HFI9CLHt$XLL$XLL$L\$HD$PL\$LL$ILI)x MH)E L;=FL;=u L;= I/3 HL$HMHH=ALHqIH- L5jP57= j52 AUjPC IHPHI/ I,$"MHmMt ImMI.yLַlH,HkH>H L.Ll$0}DHH^H\$@LvLt$8f.HhL0f.D$ Lf. \D$HI& Hr D$H9P HS HRHL=? MIGH52 LHHPIIHM#IH'D$LD$ 蟹LD$ HIHI9@LHt$XLL$XLL$(LD$ HD$PCLD$ LL$(IMI) MI/ L;-L;- u L;-WDIm ESLt$D$MIE͸IHD$趸IHH* LMLH5HH=jAHP5S: j5/ ASL\$HjP@ L\$XIHPHTIm I/ I+AALLL$LL$@HKHIHH\$@fH AHH`HH5iATL H81׼XnyZH H=E1蕃HxL[]A\A]A^A_H$@H8LL\$#L\$ fLHE1LLL$LL$MHf.LvHHILt$8HD$0fDLLD$蓳LD$zfLxMH aHRMHII?IALl$0kfD1IE0HtHD$ I9:H9I9EH9F#A}  ~ F IUH;VHFI}HAH9At HE] DF DD@@8A k I}HA@HE|$ A C L^0HHA@IEDAV ALDDE9u0HtEHL$HiHL$fDHI9HtI9Id@L1M9uuL9uuLLD$HL$HHHtbH;!HL$H;=LD$L9HL$H|$RHL$H|$H/fFY)HUyfDE1E11E1E1=yE1Mt I/MtI)tCMtI(tXH oH=}MI,$E1LLD$t$菰LD$t$@Lljt$tt$fDLLD$LL$t$RLD$LL$t$QE1E1E1E1>yDLL\$ L\$HYo@HQ, LHHL$nHL$HIHD$0Hf.HL$0HT$PMLL H9ZZyLLD$ kLD$ LHL$SHL$qfLLL$L\$.LL$L\$IF01HD$ DHtI9jHI9FH9FA~ ~  IVH;VHFI~H9AHAt HE^ DF DD@@8A  I~HA@HE|$ A c L^0HHA@IEDA+ AS DDE9usHt|HL$HKHL$uM@yTHL$ʲHL$HNyBfLM9uuL9HI9M4LhSzE1^fDL@AƅXzDE1Im1 Lt$E1E1t$E1E1@LHL$LD$葭HL$HHH;aH;=LD$L9HL$H|$藲HL$H|$H/fD .UH E1E1AyE1E1AD$D$HE1E1ByE1E1DH=q* HJ H5K ~IfDH=I* L\$|L\$IHL$蠰HL$HGyL舫ZHxLhMLD$TD$H=) H H5 ~IfDE1E1E1ɻMtzLE1E1MMvzE1I+ALLD$LL$t$贪t$LL$LD$H=) zI5@蓳IPLHD$kLL$GMhMUMxIEII($fHnfInHt$PLflúLd$`)D$PvImI;L.E1E1ɻMz3E1E1RzH=)( H H5 ~|I=fDE1Sz~fDLLL$L\$fLL$L\$6LHD$CLL$L\$ @H=' tyI@#LL$IfDE1SzfDD$HL$ڨD$HL$~@LHt$HL$覦HL$Ht$aHHL$Ht$vHt$HL$1H=& H L\$H5~ ){L\$I_@SzLfHvHI}HE1E1E1ɻDyL\$LD$I,fzSI(E1@H=& wI@E1E1MDy{IMWMMGIII/fInfInLǺflHt$PL\$ LT$LD$)D$P sLT$LD$L\$ II*LLL$ LD$L\$֦LL$ LD$L\$fSzE1I˻SzE1E1MǻDzMCMWIKIHI+fInfInHϺflHt$PLD$ LL$HL$)D$P)rLD$ HL$LL$II(+LLL$HL$LL$HL$ @D$HL$ڥD$HL$9LHt$HL$誣HL$Ht$HHL$Ht$聣Ht$HL$E1E1ɻDzeMpMMxIII(fInfInHt$PLflǺLL$ )D$PqI.LL$ ILLL$ LL$ DDHvHI~HH5 + H=j/ 1 IH1H2I/KTzE1E1H5* H= / 1a IHQ1H[2I.E1E1E*zE1E16U{'GzHLQzIDDDDME1E1[zGDDLLD$ LT$L\$覣L\$LT$LD$ ULLL$ HL$LD${LD$HL$LL$ LLL$ ZLL$ LTE1@zE13L+E1ɻTzE1E1E1E&zE1E1E1E1LL\$t$ڢt$L\$E1fAWAVAUATIUHSHhHHIHH H|$(H HL$ L$LL$`HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H9X!H H(HH H$H!HCH5 HHHl(HH$H'H$H/H$1HDŽ$HH$H9_(fHnfHnfl)$5mH$H$HHtH/SH$HDŽ$H'H$H/ HmL$HDŽ$ IGH5 LHDŽ$HH(HH$H(H5% H9 HCH;:HE1H{AHD$H+HDŽ$E IGH5! LHH/HH$HA/Ht$`H,fH$HH5H$H/H$H5$ HDŽ$HDŽ$H9 HCH;[EJ1H{f H$Ht$H9H HD$8HZMHs H H9PQH HSHL5 L$MPH5?! LH$IHRH$H/ .H H HDŽ$H9PSHn H/UHLZ MSH5 LLT$ELT$HI UI*5H H  H9PWH HhYHL MWH5 LLT$LT$HICYI*)HI9Ei[H$LL$LL$HDŽ$iLL$MH$I))L$MoZI*)H5 H$7IH\H$H/)H$1HDŽ$H GH$H9O*+fHnfInfl)$hH$H$Ht H/uڜHDŽ$I.$)L$M/*H$H/IH$H5. HDŽ$L$HDŽ$Hx%H H5 H9psH H6uHH HD$H$HsH5} HIHwH$H/)ZH5 H<$HDŽ$H$IH?zH H$1HDŽ$I9MfHnfInHR LflH$ )$fgH$H$Ht H/eH$HDŽ$H/ZH$HDŽ$HD$H ImbH}H$H5H9HD$0H9H$MOH;|$BO襠H$AŅ/H/3cHDŽ$ECH H5 H9puH HHL- MsH5 LHD$H$HWImH@ H H9POH HIHHl HD$H$HH5? HIHH$H/aH5Z H<$LD$HDŽ$PLD$HH$I HI9@5LǺH$LD$HDŽ$L$(eLD$IMH$H/6HDŽ$M7I*rH5 LHD$H(ImUH$HH9GӻHD$H$HDŽ$H$dH$HL$HHD$HHH$HD$HžH$H/ HDŽ$LIH$L$詘IHH;D$0H;$O~L;l$D~L违…ImgH$HL$H$H/wH$HDŽ$H/+L$I}I.,HDŽ$MfHq# L(hE1H<$1HA1AH$IH{cHH$H/QLHDŽ$H4$HHD$HHLL;L$fH5 LMiL $oL $HIeH5 H9WH@H;D}oIPHH?HH1H)Hu HVI(uLL $9L $H5 H= 1L $ L $HHD$I1HLL$#IELL$H$HIEL $E1E1E1D$`pE1H$DŽ$rHD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$H(^2EH6 HH9PBHHM"HL5L$MBH5  LH$IH^CH$H/#H$1HDŽ$H H$H9OGfHnfInfl)$E`H$H$IHtH/)L$HDŽ$MFH$H/#H5 H$HDŽ$H9@@HGH;KE1HAH/)HDŽ$E!H5m H=F 1oH$IHz1Ha!H$H/>[D$`hoE1E1E1HD$ E1E1HDŽ$DŽ$bHD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$FH+!HHDŽ$HD$H$H$HH$I"H{ HTH9X:"H;H(HH'H$H6"HCH5 HHHp(HH$Hj(H$H/(IGH55 LHDŽ$HH^)HH@)HH9C?LCM2LsIIH+H$LL$LD$HDŽ$.]LD$H$I(H$H(I.H$H H9G<H$H$HDŽ$H$\H$H$H/[H$H$HDŽ$HN<H/H$H$HDŽ$HDŽ$Ht H/H$HDŽ$Ht H/H$HDŽ$Ht H/H5 HߺHDŽ$oH$IHK<H<H5I9HD$0I9H$,L;t$!LiL$AŅI. HDŽ$EHpH9H9PDH HHHL5 L$MDH5D LH$IH=GH$H/%H$1HDŽ$H H$H9OHfHnfInfl)$ZH$H$IHtH/L$HDŽ$H$MHH/H5? H$HDŽ$H9=HGH;[ME1HAH/HDŽ$E[H5 H= 1H$IH1HH$H/ZD$` oE1E1H$HD$ E1E1E1HDŽ$DŽ$]HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$i fˌBfD軌fD諌fD蛌fDH;HߺHHVH;AH;`DHHD$$H9$HH+A$H$E\D$`mE1E11HD$ E1E1E1DŽ$UHD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$ Hh!HE1HD$0HRH$L;d$DŽ$HD$0HDŽ$HHD$HSHHHHD$xH HH  I,$H$.Ht$ HD$0H9H;$SHT$H9EH荐F"H$Ht$H9:H5 HI(WYH$H/;YH$HDŽ$H/YH"L$HDŽ$HDŽ$H H9HHHHL L$MWH5LVH$H$IH4H/{cHDŽ$zH$IHI$H$L`H$IHH5H .H9HHHўHLM?H5 LLD$ LD$ HII(uH5ZH$LZImuH$H$H$JHD$0HH$H/H$HDŽ$H/H$HDŽ$H/HDŽ$I,$^HD$XE1HD$PHD$HHD$8HD$@HD$hHD$p$9L\$0H5"I{H5LL$2L$HHD$ H$H]H9PԐL`MǐH@I$HH$H$H/ƇH H$H$L$L$H$OI,$L$HD$ >H|$ {H$H/HT$0HDŽ$HH$HH~HD$ HD$0H5. LLL$ LL$ HIH5I 1HLL$ LL$ AImhE#`$UH5 H|$0LL$ LL$ HIH5 1HLL$ LL$ APImEKUH5_ LLL$ JLL$ HIH5 HLL$ LL$ AImUETHUH5H9pHHHL-qMnH5LLL$`LL$`HHD$ H$cImLL$ LLL$ HIH5TLLL$ WLL$ HIH5/HLLL$`HD$ *LT$ LL$`/I*ޡH5g H$LLL$`LL$`HHD$ 3H$H/rHDŽ$ImDHt$0LLL$`GLL$`HIYH5H|$ HL$HD$`r~LT$`L$mI*HD$ L$HIf.DH=HZH5[SHH$HXfHyE1E1E1HD$ E1E1H$HD$XIHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`mDŽ$THD$fHt H/H$Ht H/H$Ht H/Mt I*DMt ImdMt I($t$`H fH=DLL$E1 NL$L;L$tMtAA8HmHt H+ZMt I.{HL$HtHHD$HHlHT$xHtHHD$HH]HL$HtHHD$HHNHT$(HtHHD$HH?Ht$0HtHHD$HH0H$Ht H/)HL$pHtHHD$HHH\$hHtHHD$HH HT$@HtHHD$HHHt$8HtHHD$HHHL$HHtHHD$HHH\$PHtHHD$HHHT$XHtHHD$HHHt$ HtHHD$HHI/Mt I,$H $HtHHD$HHHhL[]A\A]A^A_@H|LL$p|L$^L$L$L$C|L$L$L$fDL$L$L$|L$L$L$fDLL$L${L$L$LL$L${L$L$oL$L$L$c{L$L$L$fDH8{L({LH{jL{xHzHzHzHzHzzfDHzHzHxzHhzHXzHHz$H8z3H(zBLzLHiE1E1E1HD$ E1E1H$HD$XIHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`mDŽ$THD$DH=IHi@KHHE1E1E1HD$ E1E1IHD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`mDŽ$THD$$DHGH$HHWHHH$H$H/H$H$H$c1I)\LxO H]HIE1E1E1HD$ E1E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`mDŽ$UHD$;wfDL(w'H$HDŽ$HH;D$0$I$HH5=H9pEH$Hh?HHHD$H$H>H5HcHD$H$H8?H$H/%HDŽ$zHD$H$H?I$L`|IHAHNH5gH9pCHNHFHL-:MCH5LLD$LD$HHD$H$kFIm.H$H5`LLD$c}LD$BH$H/0H$H$LLD$HDŽ$;H$LD$HHD$H$MH/1H$HDŽ$H/1HDŽ$I(1I,$H$H$1H$Ld$xHDŽ$HD$@HLD$tLD$5tfD{tfDkt!fDKtfDf1HIH$)$@H$fLLT$tLT$cfLHD$sLL$fLsHsYfDs]fDLsE1ff.CADEHЯHD$fD[ssfDD$`nE1E1H$HD$ E1E1E1DŽ$\HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$<@LrH= BIHD$ E1E1E1HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$hHGH$HHWHHH$H$H/_H$H$H$yH=HH5TDHD$f.LXq<LHq;qGfD+qfDqfDHqHaHDŽ$HD$mpJfDpfDpfDHD$ E1E1H$HD$XE1E1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`'oDŽ$`@yHH=IHH5BHfDD$`nL$M7I(H$HDŽ$Ht H/2H$HDŽ$Ht H//HDŽ$Ht H+L5I}XI9HIFHz%HW@A@rHXH HJH%1fHH9 L;tut$`H ?VXH=;=H$H$LH$ H$HH}H$HGH;mu9HLUM5:H=LLT$vLT$HII*#H=H$LL$L$HDŽ$"LL$HII)&MVI@ ,A@+1qH1HLHD$uLD$II(WMIIMM@q@HtbH;\${EHCHt @AR@oRHHLLD$ LT$LL$8tLD$ LT$LL$LLLD$lLD$Mt I(N6I.D$`nDŽ$Z$#kHDŽ$HDŽ$IHDŽ$@IfH$H$H$LLXLH@LPLL$ LT$L\$L\$LT$fLL$  8H+{ILLLH$H$LH$>HDŽ$HDŽ$HDŽ$IE1E11H$H$H$NE1E1E1HD$ H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$cHI9HuL;5dfDDŽ$XLjH$Lpkt[jfDHHj;jfD+jfDHD$ E1E1E1HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`)oDŽ$`#@rHD$`nH=9H-@L@i3i`LT$gLT$HDŽ$HDŽ$IHDŽ$I*DŽ$ZD$`nLhvLL$dgLL$HDŽ$HDŽ$IHDŽ$I)DŽ$ZD$`n#LshfDD$`fnDŽ$YD$`nsKqHH+E`HhDD$`+nL0H$HhIHHDH;D$0L;$|L;D$qLLD$mLD$AuMI('EPH5H$1hIHSH;D$0L;$L;D$LLD$$mLD$AVI(r1EaHL$H9 $>FH+H5H9piHH?nHL L$MhH5LH$H$IHZmH/a=H5H<$HDŽ$gH$IHpH$HeH9GvH$HDŽ$L$2IH$H/r@HDŽ$MrH$H/ CH$1LLD$HDŽ$VfLD$HH$IAtI(NH$H;|$0H;$1H;|$1PkH$Aąx{H/eQHDŽ$E|H?H<$HH0H5H$IHhHDŽ$HI9AZpIAH$HEpMAHL$AII)cLLLLD$H$HDŽ$H$s0H$LD$H$IHtH/'fL$HDŽ$MFI(`H$H4$H$HHD$HHY`H%HHDŽ$H9PaHH܆HL L$M H5uLmIHWH$H/veL$HDŽ$gL$HH$IHt$xL$HH$HpiL$HH$I`H@H H9HĒHHHL-MH5LL$L$HH$I"ImsH$H5VL$H$UjL$WH$H/4vH$H$LL$HDŽ$/L$HH$I4I(2{H$H/{H$HDŽ$H/zH$H5HDŽ$HDŽ$HHD$pH$IHHDŽ$HI9AfIAH$HQIQHAHH$H$H/H$DH$H$Ht$8H$HDŽ$H)H4-H$H$Ht H/,L$H$HDŽ$M)H/H$L<$E1E1HDŽ$HDŽ$HD$PHD$HH\$ Lt$XH$HD$h1IH$H$1`H$IHSH;D$0L;$kL;t$kLeÅH$H/;HDŽ$#H5|H|$(H$HƓH$H$,iH$HcIH4H$H$HDŽ$IFHnH9GHGH$HHWHHH$H$H/$H$H$L$H)H$PHD$8H4*H$H$Ht H/HDŽ$I.ȇL$H$MH/HDŽ$H$Mt I,$H5`H$HDŽ$^H$IHhH;D$0AH;$D~L;t$}LcAąސH$H/ҊHDŽ$E!HH5H9pHmHHL5YL$MZH5L1HHAH$H/HDŽ$H P1H9MH$HH)H$H$H$PHD$8H4(H$H$Ht H/XL$HDŽ$MUHmeL$Mt I/e1ɺHLHDŽ$H$HHL?_IHΨH$H/XHDŽ$I,$4H5LHH%`H$H˫HH$HXobH$H$HH5Hxc}H$H$HxH$H˩HmH$H/H$HDŽ$H/HDŽ$L$Mt ImHAH5HDŽ$H9p&HHHL5L$M]H5LH$HH$H/HDŽ$^H$H(I$H$L``H$HxHT$0H5|HbH$H$H$HH!H$H/H$HDŽ$H/H$HDŽ$H/HDŽ$HEH;ޔHUHHEH$HE H$H$HH$HHmYH$HT$HH$HtHHD$HHH$HL$PHDŽ$HD$HHtHHD$HHH5H|$HHDŽ$蛾H$IHHDŽ$HēI9FdIFH$HOIVHAHH$H$H/H$HL$8DHDŽ$H$H$H)H4$H$IHt H/tHDŽ$M?H$H/#HDŽ$I.H5L膽H$IHHDŽ$HI9FIFH$HIVHAHH$H$H/H$Ht$8AUH$H$HD$HH$L)H4#H$IHt H/ݨHDŽ$M%H$H/ HDŽ$I,$H5LnHH*H$HUH$HiHmQHD$hH@L`pMxI|$lHT$H$H$^IHH|$hLHAT$I.AEH$H/٠H5LHDŽ$蛻H$H H$HTIHH$H/H$HDŽ$L$H/HD$HIHD$PH$HD$HH;qHUIHCH;AH;D*L;t$LZI.AED$`6oE1E1H$HD$ E1E1E1DŽ$aHD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`BnnLwM(HGIHH$H$H/H$H$H$L$H$H$I.LS@H.HDŽ$DHD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`nDŽ$\_RfDHD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$a7P+fDME1UDH.HDŽ$DH5YH|$(IHJiTH$IHNH6HH+H$HPHH$HX VH$IHOHT$xH5HWMHHԶH9P0VHH4[HL L$MsUH5gL?IHVH$H/+H5 H$LLD$HDŽ$VLD$vTI(4H$H$LHD$0H\cIm.9H$H/9H$HDŽ$H/ 9HDŽ$E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$(HD$@DHD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$h'H=HZH5[V IWfDHL\$ LT$LL$QML\$ LT$LL$ZDHD$ E1E1E1HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`SoDŽ$a>HGH$H#HWHHH$H$H/H$H$H$۷HD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$h'H=Ie@DͰHD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$h^H=?HH5IHLL$JLL$ԳHD$JLL$雳H=HkH5lGIKLHD$RJLL$IHD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`nDŽ$\7I^H1fDHH9I;|uDJH=IȪHD$ E1E1H$HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$hLH;EIIHYH;H;L;t$LZNI.AH$ED$`WoE1E1E1HD$ E1E1DŽ$aHD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$@LGHD$ E1E1E1HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`nDŽ$\H={NILF2LLD$FLD$#I.ELFpxH=01H=HKH5LgIXHD$ E1E1H$HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$hqLE@HGH$H%HWHHH$H$H/H$H$H$ݶHD$ E1E1E1HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`nDŽ$\nLD$DLD$VH=;I鏦HD$ E1E1H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$hLLD$DLD$H$H$L$E1E1D$`qHD$ E1E1H$DŽ$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$LD$NCLD$DLD$:CLD$L(CTLC,ME1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$hMuMMUIIIml!fInfInL׺flH$LL$LT$)$LT$LL$H$I.`LLL$LT$ALL$LT$?HAHDŽ$SAͥLA雸Az1ff.CEH;}H5|H8BLD$eAL$LD$頷NAdHD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$h8@uH;{)'AIH\H;D$0H;$L;t$L=FI.AE˒D$`nE1E1H$HD$ E1E1E1DŽ$\HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$#L?Ax0I(H5jLL $.L $HIgHHLL$H$?L$LL$HHD$H$I(H{H$HzH9HD$0H9H$mH;|$bL $DH$L $~%H/_HDŽ$)LL$Ht$8LHLL$H5$H9p+HɥH.HLM+H5}LLL$8LD$LD$LL$8HHD$H$9I( $LL$@LL$HHD$:H$HxH9G>HD$LL$H$HDŽ$H$ LL$H$Ht$HHD$HH H$HD$H<H$H/ H$H;|$0HDŽ$H;$H;|$LL$BH$LL$A>H/HDŽ$E@HHH9PFHHIHHHD$H$HXHH5HLL$/LL$HIEH$H/9H5%LLL$8LD$HDŽ$LD$LL$8HHD$H$LLI(!H51LLL$wLoMg>HGIEHH$H$H/m+fInźLL$H$D$H$)$FLL$H$Im7Ht$HHD$HHj$H$HD$HPH$H/)H$H;|$0HDŽ$H;$ H;|$| LL$@H$LL$A~TH/*HDŽ$EU$\̡LL$fTb=LL$HHD$HH$TLL $:H$L $HHD$H$J^H/<H$H;|$0HDŽ$H;$#H;|$L $?L $AM]H$H/@HDŽ$L $E8H5{H=,1LL$PLL$HHD$H$AH|$1L $5H$L $H/grL $E1E1E1HDŽ$E1H$D$`tqDŽ${HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$fDD|LL $K8L $6LL$$58LL$$L 88 8鸤H$E1E1HD$ HD$XE1E1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(Ld$xD$`qDŽ$HD$j7ή`7ÜH=̵HD$H$E1E1HD$ HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(Ld$xD$`qDŽ$HD$T1ItH9HT$H|$6HT$H|$HH9ufDHh6HDŽ$LO6H$E1E1HD$ HD$XE1E1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(Ld$xD$`qDŽ$HD$B5aL55MHqE1E1E1HD$ E1E1H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`mDŽ$UHD$qLLL$4LL$H;qWPXI{I.DxL4:H$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$Ld$xD$`qDŽ$HD$鉴D$`unDŽ$[YIFXH$IF`AFXH$IFhIFhH$DU3;HLL$3LL$"HD$ E1E1E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`wpDŽ$m銳2XLd$xE1E1E1H$D$`qDŽ$H$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$ӲH=H}LD$H5yLD$I%H$E1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$Ld$xD$`qDŽ$HD$ LL$r1LL$1L$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$dHD$ E1E1H$HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`pDŽ$qưDH5LL $L $XD$`pE1E1H$HD$ E1E1DŽ$oHD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$H=ޭLD$LD$I]H$E1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(Ld$xD$`qDŽ$HD$MLL$.LL$1ff.GDAؚL$E1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$銮MH$11--黦L-霦L$E1E1D$`drDŽ$E1H$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0ӭH5LLL$ LL$ HIRiHGH H9HhHgHhHL-SMxhH5LL$L$蓒L$L$HHD$ H$]Im\L$LT$ 0LT$ L$HIgHD$0L$L$HIE2L$L$HHD$ H$QgHCHlH9PiHSHiHL?MHiH5LL$L$L$臑L$L$HHD$ L$H$hI(n[H$H$L$H5 LT$ &3H$LT$ L$3hH/UhH$H$LL$L$HDŽ$L$L$HHD$ H$HH$H/dHDŽ$ImtdH$H/>dL$L$HDŽ$.L$L$HHD$ H$H$Ht$ L$L$HFHDŽ$0L$L$HHD$ HH$HT$`H5_LT$ L$1LT$ L$-cH$H$LLL$`LT$ 莏LT$ LL$`HI>|I*bH$H/elH$HDŽ$H/3lHDŽ$L$HD$ X@#)MH$1 Ld$E1E1E1L$HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(D$`*rDŽ$ H=HH5BHD$+HD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`oDŽ$jPI.DFzL'e1鯺'H$E1E1HD$ HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(Ld$xD$`qDŽ$HD$闧H=xKHD$ĊH;"b1LǺLL$L$n'L$LL$HHD$UaH;8cHH;b*HD$H9 *HLL$0LD$h,HL$LD$LL$0HH$HH)xI(oL $E1E1H$D$`pE1DŽ$qHD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$LD$%LD$zLd$E1E1E1L$E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(D$`,rDŽ$wHD$ E1E1H$HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`pDŽ$s٤HD$ E1E1H$HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$j;HD$#LD$FL$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$铣LL$HD$"LL$LD$"{HD$0L$HD$ HILD$"LD$̼DL$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(D$`9rDŽ$顢L $E1E1E1HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`pDŽ$sHD$ E1E1H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$juLLL$LT$ LT$LL$sH$'HD$@H MHHD$ H;H$2HHHHD$XH|$ 'nH|$@#IHYZH|$ HD$w#LD$HH$IvVHt$XHLD$L*LD$HH$IUH$H/:HH$LǺLD$HDŽ$[ LD$HH$ITI(OH$H/OH$H;|$0HDŽ$H;$>H;|$>7%AąOH$H/gOHDŽ$E'HFfɿeH*L$ fHD$0H$HPHD$0H5 HDŽ$L`HD$(HyH$IHPHD$(H5HMH$HH&PHYH9G_LoM_HGIEHH$H$H/_H$H$L$HDŽ$H$ImP_H$4_H$H/LH$HDŽ$H/KHDŽ$3%Ht$ H|$(LIŸHH+T$@HHNHL.H$HtBH5r13H$IH/PHDŽ$MҀI)PH$H&H$IHqH$ASE1E1jH|$@11A\A]IH\pH$H/QH5rLLD$HDŽ$YLD$HH$IqI(QH$HwWH9GLQLgM?QHGI$HH$H$H/QH$H$L$HDŽ$H$I,$PL$MeH$H/^Ht$0L$HDŽ$HHD$HH^HDŽ$E1Ld$0HT$xH|$0LL$H5%xLL$L$E1E1D$`wDŽ$E1H$HD$ HD$PHD$HHD$8HD$@HD$hHD$pHD$(HD$Yf1HLD$ LL$LT$LT$LL$HLD$ HӭH8VH5LD$H8|LD$鮭LLL$ ULL$ DLC,LLL$1LL$:L$E1E1D$`rDŽ$E1H$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$#ƁLgIEH$H}IUHHImt2IH$L$H$}D$`pE1E1E1DŽ$sE1HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$$HD$ E1E1E1HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`doDŽ$b隘HD$ E1E1E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`oDŽ$j L$E1E1HD$ HD$XE1E1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0D$`MrDŽ$yH$1[1ff.GDAʈLHLL$LL$H5H=E1n|IHC1HHD$cLL$I)(L$E1E1D$`rHD$ E1E1H$DŽ$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$MLH$LHD$}LL$D$`pE1E1E1DŽ$jE1HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$jH=H51L $zL $HHD$HH$t@1蝢H$L $H/+HDŽ$D$`pDŽ$tL $E1HD$ E1E1E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$}鑮L$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$ГHD$6LD$yL$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0D$`[rDŽ$:H=H zLL$H5zaLL$I7L $E1E1H$HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`pDŽ$vbLL$LL$L$E1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0D$`]rDŽ$ϑHD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`6oDŽ$a.L$E1E1D$`rDŽ$E1H$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$隐LL$LL$LL$LL$\L4LT$LT$vL=H=%LL$LL$IYH$HL$LwLrvL$E1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0D$`brDŽ$~H~HuH9POHuH[OHL suL$MNH5LktH$IHNH$H/<HDŽ$H$IHLH$HH$HHIHMHK}H tH9H;mHtHhHL tL$M_hH5LjLLD$sH$LD$HIfH/NH5`LLLD$HDŽ$TLD$pgImKNH$H$LLD$?sLD$HHD$0fH$H/MH$HDŽ$H/-NHDŽ$I( Nf rtHD$0H*D$@YVtH@HD$Hf/;H,IHTsII LHI LHI LHI LHI LH I H{Ld$PMl$H9PpkHrHeHLrMeH5LLD$qLD$HH$I4aI(;MLIHcHHD$LD$HH$IcHzH5MrH9pbH4rHbHL rL$MaH5PLLD$CqH$LD$HIJaH/LH$HaFHDŽ$H9G`1H$H$L$H)Ht$8H$H$H4LD$hH$ PL$(LL$LL$LD$hH$IHt H/jHDŽ$I(HH$H/HHDŽ$I)HMhH$H/ViHDŽ$L;l$4iH[zIEH9HXHHq1H;THH9H n1Ҿ=L$IHHdQHHNnHL$8HDŽ$fHnfHnH$HDŽ$ flH$()$fo>qH.H$)$0fH$P)$@3H$(HJH$(HHHJH$(HBH@Hx\StIqhH|$8LL$蘷LL$HI)OL$E1E1D$`vDŽ$E1H$HD$ HD$PHD$HHD$8HD$@HD$hHD$pHD$(HD$HH9tHuH;DFIH=lk+AMdOHD$MIQXH5lH9OIyP~0IApH8~IAxHSH9SIHOMa@AA8u H|$uIImWPHD$(H5ɀLL$hHHLL$hHHD$H$OHD$(H5aLL$HLL$HH$HcOH@BH9G%OLGMOHGIHH$H$H/MHt$8H$LL$hL$LD$HDŽ$LD$LL$hII(MMLH$H/LHDŽ$ImMLL$8 HT$ MIHD$HD$(IH+T$@Ll$HH\$PLL$8HxHH;l$ |K1E11HL\$pLL$hLT$PH|$8LT$PLL$hHL\$pH|$8H!H9KHH!I HHuH1IuHIL$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$鬅H5-H=Ώ1jIHI1HHD$LL$I)!L$E1E1D$`sHD$ E1E1H$DŽ$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$քL $E1E1H$HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`pDŽ$v=i~H隟LdL~HtkLgjLLL$ULL$L $E1E1E1HD$ E1H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`pDŽ$v?HD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`oDŽ$]鞂 }|L$E1E1D$`rDŽ$E1H$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$L$E1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$eLLD$LD$L $E1E1E1HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`pDŽ$vɀ%gL$E1E1HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$6LoMHGIEHH$H$H/m$fInźLL$H$D$H$)$2LL$H$ImLLL$ LL$L$L$Y{HL$HD$ L$HD$0e{L $E1E1E1D$`pE1DŽ$vHD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$~LD$L$LD$řH$L$xL$E1E1HD$ HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`sDŽ$ ~L $bL $bH={HSdH5TdIhHD$LL$H$HDŽ$H$LL$H$L$E1E1HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0D$`erDŽ$}HL$HH$HHH|$T$0LL$L$KT$0LL$L$LL$ /LL$ &xLdH7LLL$H5H81HLD$?H=H5؁1L $aL $HHD$HH$d=1豉H$L $H/)L $E1HDŽ$D$`qDŽ$wLL$`L$wLT$GT$cLd$0E1E1E1L$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pD$`trDŽ$g{H=9yHaH5aItL$E1E1D$`rDŽ$H$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$zbL$E1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$ zH=wH`H5`@IɩLPL$a>aL$E1E1HD$ HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`!sDŽ$=yL $L $H= wI鸑L$E1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$xH=gvH_H5_I]HD$ E1E1H$HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$` pDŽ$kwLd$0E1E1E1L$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pD$`vrDŽ$PwH=1uIpL $E1E1H$HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`"qDŽ$xvH={tHd]LL$H5`]LL$HD$X1:]fA.@EmL$E1E1HD$ HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`$sDŽ$uH|$L $E1E1E1E1D$`pH$DŽ$rHD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$uML$E1̏mH=rIäL$E1E1HD$ D$`+xH$DŽ$tL $E1E1E1HD$ E1H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$` qDŽ$xtH=qLL$LL$HD$۶HpxH|$ H$L$HDŽ$H$%L$HD$ eoL$E1E1HD$ HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`8sDŽ$&sLd$0E1E1E1L$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pD$`yrDŽ$rLd$0E1E1E1L$HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pD$`~rDŽ$#rL$E1E1D$`-xDŽ$H$HD$ qL$E1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`sHD$ E1E1H$DŽ$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$iH=gHXPH5YPICcLLL$ LL$ OgL $pLd$0E1E1E1L$D$`rDŽ$H$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$p iH5nH=+s1TNH$IHC1HFvH$H/9&L$E1E1HDŽ$D$`MsE1E1H$DŽ$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$!hLd$0E1E1E1L$HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pD$`rDŽ$gH=eWI&aLLHT$HT$H$H$L$IպKHD$ E1E1H$HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`0pDŽ$kfL $E1E1E1D$`@qE1DŽ$xHD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$fL $E1E1E1HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`aqDŽ$zeH=oH5j1L $JL $HHD$HH$B1rH$L $H/"L $E1HDŽ$D$`OqDŽ$yLd$0E1E1E1L$E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pD$`rDŽ$rdLLL$ LL$ 4aHD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`nDŽ$\cLE1E1E1E1L$D$`sDŽ$H$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$cL$E1E1E1D$`xH$DŽ$bHD$ E1E1H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`pDŽ$kObME1E1HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`,pDŽ$kaMXMGMPIII(H$LH$L$L\$LT$H$ǬL\$LT$II+GLLT$LT$|GD\L$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`isDŽ$`>EL$E1E1HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`}sDŽ$_LLL$ SLL$ ^H$E1E1L$HD$ H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$H$D$`sDŽ$<_~LLL$`LL$`]LL$`LL$`z]H=\HaEH5bE=IzHD$ E1E1H$HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$D$`LpDŽ$kG^|H;H5LIUoH$E1E1L$HD$ E1H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$H$D$`sDŽ$|]H=][0IyLoM DHGIEHH$H$H/H$fInźH$D$)$xH$ImCL]CD$`eqE1E1H$HD$ E1E1DŽ$zHD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$G\HD$ E1E1E1HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`cqDŽ$z[L$E1E1E1D$`xH$DŽ$[LL$LL$D$`MpE1E1H$DŽ$kE1HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xHD$Z?xH$E1E1L$HD$ E1H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$H$D$`sDŽ$*ZLLL$`LL$`YHD$ E1E1E1HD$XE1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`FpDŽ$kYH$E1E1L$HD$ H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$H$D$`sDŽ$XAHL$E1E1D$`AuHD$ E1E1H$DŽ$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$AXLD$LD$鲷H$P1E1jH|$xA1]IH$XZM4Hl\H$Lf3H$H/ HDŽ$eyL$D$`uxE1DŽ$H$HD$ uWH$wL+xDxH$E1E1L$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$H$D$`sDŽ$VH$E1E1L$D$`sE1H$H$DŽ$HD$ HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$VL$E1E1HD$ D$`lxH$DŽ$UH=SLL$ 芥LL$ I4SL$E1E1HD$ D$`TxH$DŽ$UHD$ E1E1H$HD$XE1E1HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`pDŽ$rTL$D$`nxE1E1DŽ$H$TL $E1E1E1HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`pDŽ$t;THL$E1E1D$`7uHD$ E1E1H$DŽ$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$S$uL$E1E1HD$ D$`qxH$DŽ$FSL$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`rDŽ$RE1pL $qH=}PHv8LL$ H5r8ͤLL$ IOLLL$ LL$ O\H,H?#rH$E1L$HD$ HD$XH$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$H$D$`sDŽ$QH$E1E1L$HD$ H$HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$H$D$`sDŽ$PH=NL$藠L$IWmH=NH7H57L$L$I-mLL$LT$ L$LT$ kLL$LT$ L$LT$ 1鏰)L L$E1E1D$`uHD$ E1E1H$DŽ$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$OLL\$LT$LT$L\$L$D$`xE1DŽ$H$XOL$E1E1HD$ HD$PE1E1H$HD$HHD$8HD$@HD$hHD$pHD$(HD$D$`uDŽ$ND$`uH$H/1L$E1E1HDŽ$HD$ E1E1H$DŽ$HD$PHD$HHD$8HD$@HD$hHD$pHD$(HD$0NL$E1E1HD$ HD$PE1H$HD$HHD$8HD$@HD$hHD$pHD$(HD$D$`uDŽ$MHD$LL$ܯLL|$Lt$XE1E1H$L<$H\$@E1Ll$8H\$ E1L$H$D$`tH$DŽ$H$HD$ HD$XHD$0HD$(MIL|$H\$ E1H$L<$Ll$8E1Ld$@Lt$XE1L$H$HD$ H$D$`sH$HD$XHD$0HD$(DŽ${LIL|$H\$ E1H$L<$Ll$8E1Ld$@Lt$XE1L$H$HD$ H$HD$XHD$0HD$(D$`sDŽ$ LL$D$`xE1E1DŽ$H$KH4n*mLnL3fH$1)$H$LfHD$LD$L$E1E1HD$ HD$PH$HD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`uDŽ$JL$E1E1HD$ HD$PH$HD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`uDŽ$8JL$E1E1HD$ HD$PH$HD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`}uDŽ$IL$D$`xE1E1DŽ$H$IL|$H\$ ME1H$L<$Ll$8E1Ld$@Lt$XE1L$H$HD$ H$HD$XHD$0HD$(D$`sDŽ$IlkL|$H\$ E1E1H$Ll$8E1E1Lt$XLd$@L<$H$L$D$`sDŽ$H$HD$ H$HD$XHD$0HD$(nHIL|$H\$ E1H$L<$Ll$8E1Ld$@Lt$XE1L$H$HD$ H$D$`sH$HD$XHD$0HD$(DŽ$GLMh1EhIL|$H\$ E1H$L<$Ll$8E1Ld$@Lt$XE1L$H$HD$ H$D$`sH$HD$XHD$0HD$(DŽ$HGL $鋍LLL$ LL$ L$E1E1D$`xDŽ$H$HD$ FL$LT$ JL$LT$ 鞛LL$LT$ #L$LT$ eL$LT$ L$LT$ *L$E1E1HD$ HD$PE1H$HD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`{uDŽ$EL $E1E1H$HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`pDŽ$qYEL$D$`xE1DŽ$H$.EL$D$`xE1HD$ H$DŽ$DL$D$`xE1HD$ H$DŽ$DH=BL$LT$ mLT$ L$IH=yBHb*H5c*L$LT$ L$LT$ IL$E1E1HD$ D$`xH$DŽ$%DH$E1E1L$HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$0HD$(HD$H$D$`sDŽ$CL$D$`xE1DŽ$HD$ jCL$LT$ L$LT$ 釗L$D$`xDŽ$5CL$D$`xHD$ H$DŽ$BH=@L$LT$ 蜒LT$ L$IPH=@H(H5(L$LT$ L$LT$ IL $ULjLL$LL$@LLL$LL$Gf[fL$E1E1HD$ HD$PE1H$HD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`ZvDŽ$AL$E1E1HD$ HD$PE1H$HD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`_vDŽ$AL$E1E1HD$ HD$PE1H$HD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`WvDŽ$@L$E1E1HD$ HD$PE1H$HD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`UvDŽ$?H==诏I霰H==H&H5&IzLD$+LD$LLD$LD$鞱LD$LD$OHLLD$վLD$鿱Lþ鸲LD$HD$8课LL$8LD$PD$`uXL苾飠聾XfH$1)$aH$qL $E1E1E1HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$` qDŽ$w_>L$E1E1D$`_xDŽ$H$HD$ >L$E1E1HD$ D$`]xH$DŽ$=L$E1E1D$`VxDŽ$H$HD$ =LL$ LL$ 鹓LL$ LL$ 釓H_'L$D$`wxE1E1DŽ$H$>=IL|$Lt$XE1H$L<$H\$@E1Ll$8H\$ E1L$H$HD$ H$D$`tH$HD$XHD$0HD$(DŽ$uLD$IL$D$`xE1E1DŽ$Z%L$D$`xE1E1DŽ$H$%L$D$`xE1DŽ$ %L$E1E1HD$ HD$XE1H$HD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$D$`IsDŽ$f$L|$Lt$XE1E1H$L<$H\$@E1Ll$8H\$ E1L$H$D$`tH$DŽ$H$HD$ HD$XHD$0HD$(#H$L|$ME1H\$@L<$E1H\$ Ll$8E1Lt$XH$L$HD$ D$`tH$HD$XH$HD$0HD$(DŽ$T#E1xKIHD$HL|$E1H\$@L<$E1E1H\$ Lt$XHD$PH$Ld$8HD$ L$HD$HH$D$`tH$H$H$HD$XHD$0HD$(DŽ$"L $E1E1E1HD$ E1HD$XHD$PHD$HHD$8HD$@HD$hHD$pHD$0HD$(HD$HD$xD$`KqDŽ$y'"L$E1E1HD$ HD$PE1H$HD$HHD$8HD$@HD$hHD$pHD$(HD$D$`vDŽ$!ME1[頖H=bH{H5|sI鉔H=@HiLD$H5esLD$I鴒LL$hLD$蔠LL$hLD$ەH}XGIHD$HL|$E1H\$@L<$E1H\$ Lt$XHD$PH$Ll$8E1L$HD$ HD$HH$D$`uH$H$H$HD$XHD$0HD$(DŽ$h HPHL|$H ȉH5rmH\$@Lt$XH81L<$Ll$8H\$ H$E1ݧHD$HE1E1L$E1D$`uHD$PH$DŽ$H$HD$HH$HD$ H$HD$XHD$0HD$(H HIHD$HL|$IH\$@L<$E1H\$ Lt$XHD$PH$Ll$8E1L$HD$ HD$HH$D$`uH$H$H$HD$XHD$0HD$(DŽ$IHD$HL|$E1H\$@Lt$XE1L<$H\$ HD$PH$Ll$8E1L$HD$ HD$HH$D$`uH$H$H$HD$XHD$0HD$(DŽ$XLG趝FHD$HL|$E1E1H\$@Lt$XE1L<$H\$ HD$PH$Ld$8HD$ L$HD$HH$D$`tH$H$H$HD$XHD$0HD$(DŽ$IL|$Lt$XE1H$L<$H\$@E1Ll$8H\$ E1L$H$HD$ H$D$`)tH$HD$XHD$0HD$(DŽ$HUH$HR?LeHI$HmL-?LL$E1E1HD$ HD$PE1H$HD$HHD$8HD$@HD$hHD$pHD$(HD$D$` vDŽ$UHL躛>HD$pL|$E1Lt$XL<$Ll$8HH\$ HD$0H$Ld$@H$H$HD$XHD$(L|$IL<$MH$H\$@E1H\$ Ll$8E1Lt$XH$L$HD$ D$`>tH$HD$XHD$0HD$(DŽ$uIH\$@L<$E1H$Ll$8E1E1H\$ Ld$Lt$XH$L$HD$ D$`LtH$HD$XH$HD$0HD$(DŽ$LE(?;AE1AIHD$HL|$E1H\$@L<$E1E1H\$ Lt$XHD$PH$Ld$8HD$ L$HD$HH$D$`tH$H$H$HD$XHD$0HD$(DŽ$艙AL|$ILt$XH\$@L<$H\$ H$HH_HHH L$HEHH5z`E1H81eLd$8E1E1H$L$D$`tDŽ$H$H$L$HD$ HD$XHD$0HD$(:H; H%H$H1HmH$HGLAH$HH$AH$HH$AHH H$8H/$HDŽ$>Ld$8E1E1E1H$L$D$`tDŽ$H$H$HD$ HD$XHD$0HD$(H*E1H5kJL$H81豟Ld$8E1E1H$L$D$`tDŽ$H$H$L$HD$ HD$XHD$0HD$(H=H=זL|$Lt$XE1E1H\$@L<$E1E1H$Ld$8H\$ L$D$`tH$H$DŽ$HD$ HD$XHD$0HD$(7(L|$Lt$XAH\$@L<$H\$ H$H$H/HDŽ$MLd$8E1E1E1H$E1L$D$`tDŽ$H$H$HD$ HD$XHD$0HD$(L|$Lt$XE1H\$@L<$H\$ H$DHXIL|$Lt$XIH\$@L<$E1E1H$Ld$8H\$ L$HD$ H$H$HD$XHD$0HD$(D$`tDŽ$qHUH@HEHH@H$H$2;IH}LH G{H5[HEH%E1H81Ld$8E1E1H$E1L$D$`tDŽ$H$H$HD$ HD$XHD$0HD$(A::9IL|$Lt$XE1H\$@L<$E1E1H$Ld$8H\$ L$HD$ H$H$D$`tH$HD$XHD$0HD$(DŽ$L|$Lt$XE1E1H\$@L<$E1E1H$Ld$8H\$ L$D$`tH$H$DŽ$H$HD$ HD$XHD$0HD$(`IL|$Lt$XE1H\$@L<$E1E1H$Ld$8H\$ L$HD$ H$H$D$`~tH$HD$XHD$0HD$(DŽ$IL|$Lt$XE1H\$@L<$E1E1H$Ld$8H\$ L$HD$ H$H$D$`ytH$HD$XHD$0HD$(DŽ$N蹑7@AWHAVIH`fHnAUfHnHATflUHHH-SfHnHXHfHnHL%H)D$`fHnL OflHD$0)D$pfHnflLd$8HD$XHDŽ$HD$@Ld$HLL$P)$HLHHHcH@HF(HD$XHF HD$PHFHD$HHFHD$@L~L.LML|$8Ll$0H HHcHDHaLHLL$L$OL$LL$HIj HD$8IMNH7LHLL$L$NL$LL$H HD$@IMlH`LHLL$L$NL$LL$H HD$HIM-HML-Hf1 HH9KL;luIHAHD$PIMHML-*H1DHH9L;luIE9\HtHpBLLL$L$MH\$Lt$KE9u8LT$HHMLT$f.IL9L $LT$H\$M9uuM9uuLLLT$9IHtH;LT$L;=uM9tLLT$RLT$I/cL $LT$MH\$yGLT$L $L $LT$H)mL $LT$MH\$KffDH|$XLl$0HL$@Hl$HLL$P]f.H 11LM@H 1L1LfD1nfLH@HsHHEt$ H5m0mDLD$, D$,eH "LЄ IwHnLD$,LT$识D$,LT$VLT$L $肋L $LT$H"mLLT$SLT$~LLT$3LT$o^IwHIzHLT$L $L $LT$HmyDD>DD>LT$L $谊L $LT$Hm0DD>WDD>hpH qmAL $lH m@AWH7AVIAUATIUSHHHD$(HD$0HD$8HmHL,HHH>LAH|$(Mv HGe LoIEH3IqI躉IILImHHIHHIFH5{LHHIMIHHAHHH5.HLHmH9HRH9XH H9H HH-%HL HEH5HHH IM HmH5VLL[I.IGH-> HHH=02 LHLI藈M I/I,$IFH5VLHHs HH= I.HH9]L}MLeII$HmH^Ht$0LL|$0HD$8NI/IMtI,$IFH5LHHIIHIMHI9_8MwM+MgII$I/Ht$0LLt$0HD$8MI.HlHI,$&HEHXpHH{L蒄IHH=߽HHI,$IMLHSImHUHJHxHMHuqHH$#H$_DHHżHApH56ATL gAH fH81/XkZH ohH=OO1HH[]A\A]A^A_HuH>H|$(DMHcGIHcHEI@Ly1H KMHL9H;LuI|H|$(HMG1LLLH6HPHH564H81HUHBAlHEHDH 6gH=NNHH1[]A\A]A^A_A|lHuL`fDHP;DoGII IfDoGII DHgH^L~rL~rHH5jHH諃H5I談I0A0lHA0E1HD$@JtH9HH9AH9Fy ~ AHQH;VHFHyH9AHAt HDY DV DD@@8A &HyHA@HE|$A L^0HHA@IEDAADDE9u;H $H LL$1H誀LL$H $fDIM9fDHH9uuH9uuHϺLL$H $}HHtgH;rH $H;=LL$H9LL$HL$H<$蠂LL$HL$H<$H/VNy*HD$(lH[kfK|fDLH|A>lE1I/tlI,$tEHtHmtIMlI.bxlI,$AF1E1DL{fDH{fDL{fDI/uL{A:lfL{Lx{E1Ak~bHIhDD/"DDDbH EEAL CHghDDHIH=H9xLHH^HHHH5HIHH+L޺HL\$J]L\$HII+L;L;fL;̘YLLT$IbLT$/I*3L;=L;=/xL;=ukLaAǃHD$HE1LLLLHIARHT$LT$ _AXHLT$HA jAH=HH5f.HAAiAAiAA_kcMFMqMNIII.;fInfHnLϺflHt$`LD$LL$)D$`&LD$LL$II(;LLL$ZLL$$cIIAi1AH=*HLHD$ZLT$AAiLdZDaAiA1,H߉D$7ZD$LLL$L\$ZL\$LL$H.H=H9xHοHHLMH5LL\$腿L\$HII+<LֺHLT$%ZLT$HII*L;L;aL;LL\$$_L\$6I+L;=L;= L;=PL^AǃHD$1LELLLHIRASHT$L\$ Y^HL\$HAA6jiH=HkH5l7+IjD$6]DD$H_iAAidH=\(IHHD$WL\$.LLL$LD$WLD$LL$AiALHD$WLT$DLWNIA1AiKD$W\DD$HdiHsH=H9xUHH1HHH H5HϼIHH+ L޺HL\$tWL\$HII+L;:L;kL;^LLT$s\LT$UI*nL;=L;=YL;=L!\Aǃ6HD$E1LLLLHIASARHT$LT$ A_HXLT$HAbjAAAiLH=-HH5(HH= %HAAiLHD$hUL\$LHD$QULT$IAi1ADRL UAiA1YHjs!jdH=MHH5'IHH=|H9xHcHHLOMH5OLL\$:L\$HII+LֺHLT$TLT$HIhI*L;L;L;\LL\$YL\$I+-L;=IL;=dL;=WLYAǃ&HD$1LLLLHIAPEASHT$L\$ 8AYAZHL\$H@AAj~DAA#j\H=T#I*LR1AA(j,1A&jAHHD$RL\$LHD$RLT$HH=MH9xLH4H(HH HH50H IHH+L޺HL\$RL\$HIzI+YL;L;5L;G(LLT$WLT$I*YL;=4L;=4L;='LrWAǃHD$LLELLHIQ1ARHT$LT$ ^_HLT$H/AjA >IAOj1AAAMjH=b5!HH=NHH5#HAA{jyj#H=  IH=HAH5BM#IPUHjDL7Pb1AAjoATjA1TH(3jwTH_jZAARj 1A~jALHD$OLT$HLHD$OL\$akTHjDH5HIH2H;H;6L;|LL\$TL\$I+H=H;=:HEt H;uvHWIMH=SHt$hL\$hL\$HD$`VL\$HII+1LaI.yjHRIH5H=1IHtV1HI.t/jLM1AAj/LMjPjALHD$MLT$AAjHHD$|ML\$8IAj1AEAAjH=HH=HH5HjLL6AjA1LLjOLLOAAjj"f.AWHGAVfHnAUIATUSH@ HfHnflHxHL5H<$HD$`HD$hH\$0Lt$8H\$@)D$PH HHHD$HHKHL&LILd$0MHML%H 1@HH9# L;duH|$L4M[ Lt$8IM@HML%H1 HH93L;duH|$HHHD$@I/HHFLvL&LIHD$@Lt$8Ld$0M? Ld$0Lt$8Ll$@H=qLt$XHD$PH5<HWH9LL9LXMMQM~&1@ILH9L9HI9uHt$X1HB8HHHHHqH H9HHHxHL=MIGH5LHH~IIHMIIH5LH]JIHI.L;=(L;={I9rLjOAƅ I/cEkH$LH=VMLHpILIHO I/eHmH IDH$HHIL&Ld$0Hu:LnLl$@LvLt$8fDLIIM`IH y0AHH0H2H5rAUL 0H81PXdZH /-H=E1eHxL[]A\A]A^A_IIDI/DLGEHH=SH9x1 H:H HL5&MIFH5BLHH IIHMj IHLHHIHj I/xL;5уL;5GI9LMADžI.fEu H$LH=ǂMLHpILTIH I.LFfLHMfDLFLFLvHLILt$8HD$0fDD7MH =.H..MHII?IAH@HH9t4HuH H9t#HHL9tHuI9ffDHOAQHiE1 uLH=+DuBLLHKHQJHuHH5H8FfH -ddE1H=Ld$0Ll$@AfID$0LL$E1HD$ Ll$IHOtM9H#I9D$I9F A|$ PA~ ]IT$I;VIFIt$H9@H@t HET$ EN DD@@8u}A #I|$HA@HE|$ A Iv0IHA@IDDA0AdDDE9u'HHQGIL9LLl$fDI9uuI9uuLLNDIHtH;'L;5JI9ALiII.wLLL$Ll$y+AHHdfDLLL$Ll$HD$JDH=HH5IfDAdAe@DDE1H n*H=ILBH=I@AdAeI/uLvB@{KIzLXBIH9HHLL$LL$HIHD$0I%f.AeAdI. LADLA{Ht$HL$0MHHT$PL +dEDID$0LL$E1HD$ Ll$IHOtM9H~I9D$I9F,$A|$ mA~ wIT$I;VIFIt$H9@H@t HET$ EN DD@@8A I|$HA@HE|$ A Iv0IHA@IDDAADDE9umHHCuMLLL$Ll$ylLL$%ELL$HdDI9uu I9urtnIL9LLL$Ll$f.LLL$Ll$HD$N4"DAdAe+L?LL(@IHtH;|L;5w{upI9tkLKEI.y>@AeAg+LL$DLL$H+zdDLD$,>D$,lAdAfCAeAgH=HH5nIfDLh<LP<pIvH I|$HfDH=tI^@AgA e GIaA eAg[LD$,=D$,rL;L;yfH=aH9HEt H;zHFIHH=Ht$XL|$XHD$PIHI/t}1LA;eAj I.!DDIvHPI|$H,AhAeDDFDDDD,LHCHH;w1HW;HH[L-wL9e?IHHEHLHh:IHI/3I,$HiH5H9pHyHHL=eM*?IHHCHHCID$H!HHMl$(ID$ IE>IHfInfInfl@ILp(I. Hm/HL[]A\A]A^A_HLZ;t111Lح+?HL-vIEHkL9HBH@H9WHBHHL5.M>IHHCHHCIGHHHIG I$Mg(=IHfInfInfl@I,$MLZ9H@H@9MLDL 9L9HHtE1E1RL e!H`!H8H H51 AXZRfHyH5&!HfHAHH7IHeuMwXL(M9M IEH2IVA@A@IXH2HJH1DHH9L;lu111LNfHH$HH16IHtMnXH(L9!M.HEHnIUA@@IXHtZHJH1@HH9H;luH )H=xE1DML9UMuH;-OsCT@H=!HڛH5ۛV IafD A*fDH H=E1pH=ɶ|I@I/C*L4$ 64$@I,$I/ N*u*H H=pAI,$P@D *I/iL4$MM{54$MIm L4$Y54$H }o*AH=]I,$DH=HRH5SIfDH=4I@I.t_q*E1MH H=df.|*1)=HMMq*LLS5)nH n)H=OI,$QE1IUH~1 HH9t\M;tuL}M1 HI9twL;lunLHI9HuL;-UpO1H9SItI9LHL$H$HL$H$H1HtI9LH$H$HI9uMM C*L3ff.AWHAVAUATUSHHHL%1oHD$0HD$8Ld$(HHL4HEHL&LiLd$(M9H5HFnID$LHHHH8H/ID$H5JLHHHHH5H5HmH=Ld$8HD$0L(HOI9HnH9LXM2MQM~"1ItI9bH9YHI9uHt$8~HA8HHm1ɺIMAPA@DDE1H H= <HqHHHH HIHHH?L 9HLIL@HHelSHH5H818XZH $H=b E1HHL[]A\A]A^A_LiMH 1f.H;LHL9uHA0E1HD$y ~ PHQH;VHFHyH9AHAt HDQ DN DD@@8A KHyHA@HE|$A *LV0HHA@IEDAA.DDE9u6HL$HH2HL$IM9JtH9UH&lH9AH9FtL9uuL9uuHϺHL$`/HHt]H;9kHL$H;=j7L9.HL$H|$o4HL$H|$H/CF3H'HL$(HT$0ILL H莸Ld$(1HID$H9t*HXHt.HqH~E1 HH9t7H;TuI$TfDHH9tHuH;XjtfDHɜHH9XHH1HL-՚M H}hI9E Ht$8LMHD$0Ld$80HHI.rH=#Hl$8HD$0L^HOI9H2jH9LXM$MQM~(1fDItI9RH9IHI9uHt$8HA8HH1ɺIM]HmHU,L&Ld$(H8,>+,I.AAL,HgH5H8,p_H wH=0HAEAfDL+4H:H=HH5QIHfDHI9t4HuH5gI9t#HHH9tHuH9fDHWBHZ1 uHoH=l)LHI?0Md/HHeH5JH8+uHf.HI9t4HuH58gI9t#HHH9tHuH9fDHWBHZE1 uLgH=)u'LHI/M/HHmAAH)1ɺD/I@1ɺ,/IC@O$MHLd$(IDM$f._{2HIAAH=IM}MMuIIImfInfInHt$0Lfl)D$0I/HL(D$HL$(D$HL$IHHL$Ht$&Ht$HL$0HHt$HL$f&HL$Ht$VHvHHyHDDL8($DDHcH5H8)AWAVAUIATUHSH 10IM HdAD$Pf)D$0ID$HcHD$@LuHHHHfHnHHD$PfHnfHnHH-XflH$HI)D$`fHnflHD$HHDŽ$)D$pMIH JcHf.HE8HD$PHE0HD$HHE(HD$@HE LHD$8HEHD$0$HI Hg JcHfDHELHD$0$HH5LHV+HD$8HHH5LHV+HD$@HHHH\$0H|$8H-bH9oLIGHMt HcGIHcHEII HD$@H|$PHD$HD$HHD$H} H;=>bAH;=aDu H;=aAƉD$HCH;`t H;aHD$H;aHH;aAHCHAD$0M|$H1MPHD$H@H;s`HD$HI|$XH/ HD$ID$XHD$Ic|$0H HID$(G&IcT$0ID$8HIT$@HKHH{HPHr E1L|$(M\fAVHHcHcHDHP IHIHHIT$8JIL9{ NtEIHAII9n9 IvHFHg HvHIHL$u L#HL$HL$'IHHƗH|$nHL$LIHHIADDIHiQHH%H%Ikd)HAfAEu1 I,HD$HH)HIHLcIHL$(M)LL$ L\$,L\$LL$ L/HHL$(In@ r IU0I}H@HEM~5L L\$(HL$ LL$$LL$HL$ LL\$(HM ICHD$HjLJ4?1Ho\HH9uLHHL9Ht$MI)H)Hv&Ht$IHI46J4:LHHL9tHB4:HPL9}rtHB4:HPL9}]tHB4:HPL9}HtHB4:HPL9}3tHB4:HPI9~tLHP@t8I9~DI}Mi Lt$zIHLH ףp= ףHHGHD$HIA(LHHLH?LHH)HH "D$ !H!LHH5FLHV!HD$0Hg HHH5JH|$H HH HGWH9G LWM LOIIH/HSLHt$`LT$`LT$(LL$ HD$hLT$(LL$ II*M I)HL$HHD$ HHIEH;VIEI|$XLl$H/u[HD$H;WID$XaHVH5H8>"H}WHD$#Lt$LL$HI)uLHfDL#HHtHD$ H|$ H/EHD$ HD$ 1HfHLAFAVHH 1fKH IgfDD$HVH5j18IAfHHT$(HT$(gH\$Ld$ M1H\$Ld$ Lt$H5HUH8LL$I/"AiH+& I)tQH DH=H|$H\$HHD$HHHKfDL8fDHL|$(HHHhH5H|$4DHHI|$PH/HIL$@IT$8ID$PAD$0pHcƅxDLH8H51XZ1]DHytH5Hzu@AWHmAVfHnAUATUSHL%3H|$8H@HfHnHT$0flHD$`H$HDŽ$Ld$hLd$p)$Ht HIHD$H H5 LLyLD$`MIH$AHD$ HD$ IMJHH 1HH9K I;\uH|$HH JD`IIAMuMVLD$`HD$hHl$pHD$IHEH=eH=vbH9xH]bHHHIbHHCLD$HH5kHHLD$IHHMHH H0I9EFLLD$LH$L$HDŽ$MLD$HD$H|$H+u I(^ L9y HdH9EiH:H5HHEH5vHHHIM~H|$H5yvHGHHHHHLIHI.s H+\ L;-0L;-V07 M9. L"ADž$ImE(HI,$&HI.H+HgkLp Hg u HEImA~E11E1H5eH=i1DHHM 1HlH+L E1E1ALD$D$3Ls)fDHXLLHmIHKAŲE1E1AIvHH}HHME1A.H=_\2IH=K\H$JH5%J蠰IE1E1E1ALLD$LD$tLE1A²DxIu0I0I;09HI0Iu0I0H$AJyE1E1HLHl$(HHT$ Ll$ILMHIHHHIHD$HIMI $HIEI$M)HuMILLl$IM IUD>8bHHD$ HD$8H5^UHbL\$ HHHJH9Gi LgM\ LwI$IH/6 H$LL\$ L$HDŽ$ΧI,$L\$ IM!I. I(g L\$ 4IUIM HD$0L\$ H9HD$Ld$L\$@Lt$8Hl$8HLHHD$(IHt$ I0HD$IGHD$(HxzLt$Hl$Ll$HHl$ IH|$LIH|$LIL4HLdHLLVHLHHL)IuLl$HLt$IM IUIcEHIUu}I(IE(I0H9:Hl$8L\$@H|$0L\$8L\$H5`1LB@L\$II+= MEE1Add@A8I(=4fH@8H@(I0`Hl$(H/HT$ Ll$ILMHIHHHIHD$HIMI $HIEI$M)HuMILLl$IM IUIu0I0I;0ZHI0Iu0I0HE1E1Ar!|WDDE1E1A4H=]WH.EH5/E身ICHLDDDAŲHHH5H8Hc@ uM{MWMCIII+fHnfInLǺflH$LD$)$I/LD$H8LLD$LD$!H=\VHDH5D豪HvH=2V I&E1E1MúAIE1E1AHyUE1yAFE1E1Ac[IE1E1E1ۺAHH=UnHHc@ LHD$ LD$ I(I+0IE0IE(I0E=I0$ID(I+(HI0I|(I;(}HHI(I|(I0Ld:JHIE1E1A2E1SDE1E1A-ZH5WH|$8;HHHH9CLcMLsI$IH+fHnfInĺLflH$)$蝡I,$HWHI.H+H|$HEIHHD$HHHCzL6aE1E1A=[&II(I+0IE0IE(I0I0$ID(I+(HI0|I|(I;(}HHI(I|(I0NL|qHkHE1E1AVE1E1MƺAQM~MMFIII.fInLH$D$H$LD$)$ܟI/LD$I`LLD$L\$LD$L\$?L\$L\$HaME11A}dHIE11A"WE1E1A zEIyLLD$ LD$E1E1E1ۺAE1E1A߲'LLD$(L\$ LD$(L\$ L\$ fH$1L\$(H|$ )$蒞H|$ L\$(IIE1E1AL__LReE1E1|AnwLL\$ *L\$ LLD$(L\$ LD$(L\$ WME1E1AH5SH|$87IH[H5RH7IH*HD$DL\$HHHAH5PHML\$H5@LHN7L\$HII+sH+\HR I9FM~M MfII$I.fInfInǺLflH$)$ٜI/HImH`I,$1L$LLD$LD$EtHIE11ABgE1E1E1ۺA?eE1AtH5%WH=Z16IHA1H ^I.E1Aq,H5m?H]jME11AODE1AMLLD$(L\$ LD$(L\$ (L\$ fH$1L\$(H|$ )$PH|$ L\$(IILL\$ .L\$ LLD$(L\$ LD$(L\$ L1ۺAIE11AHML6I+At31E1E1E1ۺAI+E1ALfMuH DH=E1sfDL0HIH$HDŽ$H$HhE1E1A!H L0LߺH$L\$HDŽ$L$虙L\$HM+HL\$|L\$LjL\$MA&)MA%MA#M޺E1A!/H$LHDŽ$L$MHHLE1AxE1E1AwE1E1AuE1E1AsE1E1AqME1E1E1ۺAZL4nL'VLE1ABLE1LE1AqE1AmE1AA@I+u.E1ALE1AALHE1E1ۺA=KL%LE1A@H5:Hqe7E1E1AE1AH5Q:H1e-ME11AI+A1yH=T1E1AX^X@HH ME1ME1EfAWHBAVAUIATUSHHL=kHD$PHHD$XHHD$`HHD$0HD$8HD$@HD$hHD$pL|$HH=HH$H?HpHHcHHFHD$HHFHD$@HFLMHD$8HHD$0HwH-HLHL%AH1HH9;L;duH<$HHD$8HtHMIL%GH1fHH9L;duH<$HHD$@HIMHML%JH% 1HH9 L;duH<$HHHD$HIM~MH4$HL$0IHHT$PL Ry)6HuMpfLL$0HL$8HD$@HT$HIHIuH=AHEAWj5 FPj5 @QHj5$@SIHEHPMRHHEHĈL[]A\A]A^A_HHHH QHBAHMEIHHHԴH51|SL H81gXJZH H=E1%\HOHVHT$HHFoHNLHD$@)D$0fHLIHD$0@LIH>H4$HLL$LHD$0H LL$HMI@LyID$0LL$E1HD$ Ll$IHH\$LMOtL9H3H9CI9FUM{ [A~ hHSI;VIFHsH9@H@t HD[ EV DD@@8usA iH{HA Iv0IHA@IDDAMADDE9u(HHr@II9HD$@H1HHH ҬH5yjL @AHaH81Y^*L9uuM9uzLHIHkH;L;5eu M9-I.(LLL$H\$MLl$fLLL$H\$MLl$H$J*fDLID$0LL$E1HD$ Ll$IHH\$LMOtL9HH9CI9FUM{ @A~ JHSI;VIFHsH9@H@t HD[ EV DD@@8usA H{HA Iv0IHA@IDDA;AXDDE9u(HH@II9HD$8uHHH)AH5lwjL ѪH LH8H1_ AX&fDL9uuM9uzLHIHkH;L;5u M9I.(LLL$H\$MLl$fLLL$H\$MLl$H$JrfDID$0LL$E1HD$ Ll$IHH\$LMOtL9HcH9CI9F { 5A~ ?HSI;VIFHsH9@H@t HD[ EV DD@@8A H{HA@HE|$ A Iv0IHA@IDDAADDE9uTHtHu>@LLL$H\$MLl$H$JfDL9uu M9u*t&IL9LH\$Ll$zf.LHpIHtH;IL;5M9LI.tLLL$H\$MLl$Gf[H1HHHEt~H ݦgH=Y@LH{HA@HE|$ DLH{HA@HE|$ -Hu(LD$,蔾D$,KHppLXXIvHLD$,1MfHL9I;luI,H$HINH"L$H.HIH$H~MD$H-H0M1HI9I;luM4ML$H"fDL4$L4$HXHHqH1HH9H;TuH5=;HHD$PIHH55>H9-H@H;(2E1I}AIm*HD$PE%H(H |%H9Ho5Hc%HK5HL-O%Ll$`M5H5;LZHD$XIH4H|$`H/-HH|$XHD$`H$HD$ H1H9O5fHnH@=fHnflH$H$)$H$H|$`HD$PIHtH/50Ll$PHD$`Mk5H|$XH/-HD$XLd$PHm-H&H 5$HD$PH9H5H$Ho6HL-#Ll$XM]5H5B0LHD$`IH6H|$XH//H5+>LHD$XR}HD$XIH36H|$`HL$ 1HD$HAH9Os6fHnfInH$flHtL)$謂H|$HHD$PHt H/l1HD$HH|$XH//HD$XLl$PMN6H|$`H//HH5/HD$`Ll$PHD$P;IH9HH5!/HD$;LL$HHD$`H4HD$XHD$ H9G9HGHD$XH9HWHHH|$`HT$`H/v2HD$XH|$`HLL$H$HDŽ$wH|$XLL$HD$PHtH/2HD$PHD$XAH3H|$`H/1HD$`H|$PH/0LL$HD$P袳HL$xHT$pHHt$hIdEL茺LL$HH8HHfLL$HCLt$IHL衻IH9/HͷHD$PH4襸HD$`HH.8HD$PHLHD$PHFH^ H{zHD$PH8H|$`H/1HT$PHLHD$`ձ8H|$PH/1HD$PHHD$PH8HD$`HH9HD$PH^ LHHFHD$PyHD$PH28H|$`H/2HD$`L褶HD$`H8|HD$XHH8HD$`HT$PH^ LHHFHD$`8H|$XH/5HD$XH|$PH/5HD$PHHD$PH7HD$XHH7HD$PH^ LLHHFHD$PVS7H|$XH/6HD$XHLL$H|$hHt H/9HD$hH|$pHt H/8HD$pH|$xHt H/8H5*81LLL$HD$xLL$HD$xI)[8LL$xM98I)"8HLHD$xHD$HH9LHuH;4:fDH H H9HJ$HH%HL-Ll$`MC$LHLAƃ$H|$`H/HD$`EH( H qH9H(HXHIHL-DLl$`M(H5?5LHD$PIH(H|$`H/?!HD$`謴HD$`IH0)H,5HH!5HD$`HPH}H5.HD$XIHh*H@H;L+IEHD$XHD$HH+H|$XH/P"HD$HHD$XP @utEHt$`HPHD$HHF H.HHH|$`H.HG(,HD$HH)+H|$`H/!#HD$`|HD$`IHR+HD$HIEH9HHT$`HD$HHB 谵HD$HHHW,H4H591輶%HT$HHt$`H|$PHD$XIH-H|$PH/%HD$PH|$`H/%HD$`H|$HH/v%HD$HH|$XH/)%HD$XH5p3H $H9tHAH;O)HyHH5e'3IHHH5'3HD$HHHN$HD$`HH9G)HGHD$`H&*HWHHH|$HHT$HH/u"HD$`H|$HH$H$HDŽ$tyH|$`HD$XHtH/<#HD$XHD$`A>H#H|$HH/!HD$HH|$XH/!HD$XIH衫HL$hHT$pHHt$xIc=MvLHϳ11HHI>HD$XH11LH>HD$HH"HEH;HT$XHHpHTHyHL$DLHT$RHT$HL$H~"HD$HHQLD$I(L"Y"H|$XH/HEH;hHD$XHT$HHHpHHyHL$LHT$®HT$HL$H"HD$HHQLD$AI(#E"H|$HH/HD$HIH|$xHt H/0HD$xH|$pHt H/n0HD$pH|$hHt H/[0H5711LHD$hHD$hIm0Ll$hM1Im/HD$hL%#I$( fDH/HD$PEHH rH9HHYHHHEHD$HHMHxH !H9HHHGHL-Ll$`M|IEH5'LHH<IMH|$`H/HH$HD$`HD$ H1I9MfHnfHnLfl)$uH|$`HD$XHtH/HD$XHD$`HImH|$HHD$ H9G-HD$XH$HDŽ$L$H$uHD$PH|$XH/sLl$PH|$HHD$XMH/HD$HHD$PI.H$H}H9HD$PH9HH5Y&HHRILl$PM)H5{-L9IEH;IEH~E1HImSHD$PEhH5*H HD$PIHjH;kL;-L;-'L詭AƅLl$PImHD$PEHHD$H9HEH5\*HD$HEHHHILl$PMIEH;H;eLppMrI~g1IHHLAVI/I8Lt$HMH|$PH/hHD$PH|$HHD$HH|$HH/GHEH5DHHD$HHHHH|$HHvHGH5!HHEILl$PH|$HMH/ HD$HH|$PuIHH|$PH/ HH HD$PH9H0HHHL-uLl$PMNIEH5|LHHHD$HLT$PHI*Z HD$PL葨HD$PIHfHD$XIHHD$PHD$PIE讫HD$PIHUH&H H9HHHHL MIALL$(LH5HHLL$(ILl$`MI) HT$`H50H|$P6H|$`H/ HT$PHt$XHD$`H|$H" HD$`IHH|$HH/HD$HH|$XH/sHD$XH|$PH/QHD$PLl$`HD$`L;l$HEM}H5qHHHILL$`MIAH5LHHHD$PHH|$`H/(HD$`H|$PH;=H;=7) H;|$ VH|$PH/aHD$PH5-H (IHHH5HD$((LL$(HHD$`HHD$XHD$ H9G HGHD$XH HWHHH|$`HT$`H/ HD$XH|$`H$LL$ H$HDŽ$ nH|$XLL$ HD$PHtH/ HD$PHD$XHb H|$`H/HD$`H|$PH/}HD$PHCI\$HIQHLd$Hl$(LL$0LLl$ Ld$IHfLHeHD$HT$LH,LHȥLLH躥LLL謥L+d$IuLl$ Hl$(LL$0H53'1LLL$LL$HD$xI)LL$xM I)HD$xHD$HIImHD$PH3H}H9J fE1L<$MHE0H\$LIIlHD$I9/@HqI9D$H9E*"A|$  }  IT$H;UHEIt$H9@H@t HET$ DM DD@@8u|A  I|$HA@HE|$A  Hu0HHA@HDDA5A&DDE9u&Ht;H褢fDHL9IlI9IMH\$L<$K,DL aM9uuL9uuHLLL$zHHt\H;SH;-LL$L9H萤Hm MIMH\$L<$`HDŽ$UH VAL HfDL4$AGE1E1AH|$HLT$PHtH/LT$PMt I*H|$XHt H/H|$`Ht H/Mt I)DDE1H LH=xlMtImt>HtHmtBH$HRHHD$HH=H`0LPfDH@fDLL$.LL$W@LULL$LT$PLL$LLL$LL$fLL$ƜLL$@HE0HL$E1HD$ H$HLl$MMDKlH9HH9CH9E { s } O HSH;UHEHsH9@H@t HD[ DU DD@@8u|A  H{HA@HE|$ A z Hu0HHA@HDDA ADDE9u'HHٞIM9MH$Ll$f.LL9uuL9uuHHLT$›HHtH;H;--LT$L9HؠHm ]MHL$H$Ll$y)諟Htvf@MHL$H$Ll$O4fD胚fDHDHH9HuH;fL MLLH$H${$xH$ f.TfDHsHLD L4$A`E1E1AvHH=iIH|$HA"AfE1HAZE1A}AE1A(A:ff.Az f/AH5 H=#1HD$XIHt91H&H|$XH/ HD$XAE1E1A8E1AA8DH@hHcH@HV1LIIEHHHD$HSfDCfD3fD#5fDIEHfDLL`H5mHM2NAA E1E1H趠ISH|$HAA (L耗2vlbL(IHzHH5NHD$(LL$(HHD$`HHD$XHD$ H9GHGHD$XH:HWHHH|$`HT$`H/j HD$XH|$`H$LL$ H$HDŽ$bH|$XLL$ HD$PHtH/HD$PHD$XHH|$`H/q HD$`H|$PH/E LL$0HD$PНILL$0IL$HD$(HCHD$ [HHD$LL$8ILl$HHl$0HHH\$H|$ L˜HL$LLHL,L0HLL"HLLH)IuLl$Hl$0LL$8H|$(LL$=LL$H51LGLL$HD$hI) LL$hMI)WHD$hVLd >AgH|$HHt H/ HD$HH|$PHt H/ HD$PH|$XHt H/S HD$XH|$`Ht H/@ H ,|=DHD$`H=ocHL$`HT$XLHt$H  Ht$HHL$`1HT$XHD$PHHB1L ImIp H|$PH/W HD$PML;%nL;%% L;%* L謙I,$ Ld$HMt I,$HD$HH|$XHt H/HD$XH|$`Ht H/IHL$hHD$`HT$pHt$x#L%I$H@hHk H@(H^ LHHD$D$JLT$PAA E1E1ΛHS街H AA E1E1o茒肒xaImCHD$PPLB,H-!H@hH H@(H LHAwAA IHuHVI|$H2LT$PAA L4$LT$PA[AL蝑H= HRH5S^dIaHpAA E1E1/H|$HAAHD$/D$I!'IL4$A]AHzDHȎ}`H=<aI AA豙D$(蓐D$(HEJ(Ek!sIH)HHHI@HD$H;HDP H@utEHPI@ LǾHLD$HHHI@(LD$HI2I(J$H=H$HDŽ$L$#IH*1HI,$&HD$ E11E1HD$AA1HD$8HD$0HD$(HH9HuH;fHl$(EGEu |$ gH5LB*HBH;H9X,H"H,HLM,I@LD$LH5HH-LD$ILd$pM,I(&HuH} HpIH,LHD$pLD$HHD$xI#.sqLD$HH$I/H;HH0H$HPHT$xL@ HP(HD$xsHD$xIH0H HH9X2HH#HLM2H5LLD$`LD$HH$I2I($&H$H5H|$x$t0H$H/)'HT$xH$HDŽ$H|$pH$IH4H|$pH/(H$HD$pH/(H|$xHDŽ$H/b(H5H$HD$xqHD$xIH{5H$H//)H5?HHDŽ$3H$IH4t$ HHE1jE111҃Hc}H$I^_H6H$H/*HH|$xHDŽ$HD$HH9G7HGH$H19HWHHH|$xHT$xH/(-H$H|$xH$H$H$H$r6H$HD$0Ht H//H$HDŽ$H/*H|$0HDŽ$s6H|$xH/*HD$0HD$xH8*HD$xHMHD$H9D$H1HHH9X]8HH8HL%Ld$xMV8H5}L]IH8H|$xH/0LL$HD$xmLL$HHD$xI 9HD$HID$oLL$HH$I9:HAH H9X9HH9HL%L$Me9H5LLL$LL$HHD$pI:H$H/3HT$pH5LLL$H$HDŽ$>pLL$,:H|$pH/o3H$Ht$xLLL$HD$pLL$HHD$pI<I)4H|$xH/4H$HD$xH/4HD$pLLHDŽ$HT$0HHD$8HD$pHD$pHD$(H1AHH;HD$pH;D$w;HD$pfH$H$HH$HD$HnH'H9P;HH:HH=H$H3H5HD$xH:H$H/35H|$xHt$H1HDŽ$H9w=fHnH D$)$2H$HD$pHtH/8HD$pHDŽ$A+H63H|$xH/a6HD$x\jHD$xIH%<HD$pHT$HD$pID$HHD$HH6H$HD$xHt H/7H$HDŽ$Ht H/7H$HDŽ$Ht H/I7HDŽ$Ld$H58H8H$IH8Ht$HeHD$pIH<H$H/X5H|$pH;=HDŽ$H;=0H;|$/jAą?H|$pH/ 5HD$pE<H5wHwHD$pIH7LgHD$xIH7hH$IH7HD$xH|$pLHD$xID$cHD$xIH>H|$pH/v4H$HD$pH/Q4HD$xHHDŽ$HD$xHD$HH9P?HHt?HL%Ld$xM2?H5mLeH$IH >H|$xH/3HD$xgHD$xIH(>HT$HHD$xHPiHD$pIH=HOHH9Pz>HHV>HL M>H5LLL$LL$HH$I=I)7H$H5dH|$pjjp8H$H/[7HT$pHt$xHDŽ$H$MH$IH7H$H/7H|$xHDŽ$H/6HD$xH|$pH/6H$HD$pHL$HD$ H5ID$HDŽ$HD$XHCHD$PHD$@H{HD$H$H7HD$@H5HMHD$pH8HD$xHT$HH9P8HPHT$xH8H@HHH|$pHD$pH/8HD$xH|$pHDŽ$H$H)H,H|$xH$Ht H/7H$AaHD$x7H|$pH/5H$HD$pH/{5HDŽ$hH|$PHD$HHD$@LT$XL|$`Hl$XLHP@HLd$hHT$@JIMHT$1IH8ILLLL$@H0HI H0H0H0]aKHC DH01)H(H0HH@(H;{HH@HHtȀ8H(HI8AHI(H0믐HX_L|$pfDC_fDH0_ L _ L_ H_H^H^(L^(H^7H^FH^UH^dD\$HDT$@y^D\$HDT$@f.D\$PDT$HLD$@L^D\$PDT$HLD$@LD\$HDT$@^D\$HDT$@D\$HDT$@]D\$HDT$@qf.D\$HDT$@]D\$HDT$@`fHML%H 1HH9 L;duIH H$MxfDHFLEHD$H$HH$UID$0E1Lt$IHD$ LMH\$LDOdL9H+H9CI9D$\T{ A|$ HSI;T$ID$HsH9@H@t HDS EL$ DD@@8uvA H{HA It$0IHA@IDDAADDE9u*H0Hd_fDII9HDŽ$`H.HHL =DH5jAH CHcIH81cAYAZfL L9u|M9uoLHLL$[IH[H;ϗL;%EuLL$M9xI,$LH\$Lt$MLH\$Lt$MKHD$fHD$H;$eYYH$H$HH$HHHDH9PH+H$HH=H$HHGH5HHHD$xHH$H/)H|$x1HDŽ$H H$H9O fHnD$)$%H$HD$pHtH/MHD$pHDŽ$A@HH|$xH/HD$xL\HD$xH]HD$H$H~D$pH$HD$pHDŽ$D$xHD$x@Ht H/H$HDŽ$Ht H/H$HDŽ$Ht H/HDŽ$HHKH9XVH2H6HL%Ld$pMID$H5,LHHILd$xM7H|$pH/HD$pD\HD$pIHZH\$HHD$pHX^H$IHaHHjH9X2HQH/HL =MH5LLL$ XLL$ HII)H5&H$LLD$ !_LD$ I(H$Ht$pH|$xIH7H|$xH/HD$xH|$pH/H$HD$pH/HAt$HDŽ$I|$ I$I\$H|$HD$ =HD$0HfH=H*D$0HD$@H5HHD$(H$HHD$@H5:HH$HHHD$pHH9G"HGHD$pH""HWHHH$H$H/6HD$pH$H$H$HDŽ$!H|$pIHt H/HD$pA M+H$H/1HDŽ$I(\HD$8HD$ HIHD$H~xHD$@Ld$PLd$0Hl$@LH@HL|$HHD$ JMHD$(H1HfH|$ HMMLLH#VHl$(H9\$uHl$@L|$HLd$PH|$8^SH$HtkH51cH$H$H/H$HDŽ$H\$(H7#HHD$HH&HDŽ$I$ME11Ld$ HD$8HD$0HD$HD$(HHHHD$@ID$0LD$E1HD$ H\$HHN|M9 HI9D$I9G A|$ h A G IT$I;WIGIt$H9@H@t HET$ EO DD@@8A * I|$HA@HE|$ A  Iw0IHA@IDDAAyDDE9uTHtHUu>DHLD$H\$Kf.L M9uu M9utIL9HH\$pLLLL$RIHtH;L;= LL$M9LWI/ tHLD$H\$MVHHD$ E111HD$E1E1AHD$8A HD$0HD$HD$(@HD$ E1E11HD$E1AAHD$8HD$0HD$HD$(FfDIE0Lt$E1MHD$ILfDOlL9HH9EI9E }  A}  HUI;UIEHuH9@H@t HDE A} D@@8A  A@HuHHEt$I@  Iu0IH@ID 1A8DA9u,HLHSDIM9fDLL9uuM9uuLHLD$ PIHtTH;L;-YhLD$M9ZL UImJmLMLt$y9HDŽ$SH H 6AfLMLt$Kd@A٠AE1HD$ HD$fL R<ILHH$H$hH5"H|$(H&H5HHD$ NLL$ HII) M9I9L;`LLD$ SLD$ AfI(E EH5H|$艳IHCHD$pHD$HI9D$ID$HD$pHML$HII,$EHD$pH$LLL$H$HDŽ$6H|$pLL$IHt H/HD$pM&I)dH51LLD$MLD$HIVI(RM9I9VL; ILLL$RLL$I)UPIH6HHHqIAHD$H;HDqP H@utEHPIA LϾHHLL$HHH1IA(舵LL$HII)LKLQ~H{HA@HE|$ (LLL$ sQLL$ AAPA'HD$ E1E11HD$E1HD$8HD$0HD$(MvI)lLD\$PDT$HLD$@KD\$PDT$HLD$@AJJNLJLJAFH$Ht H/ H$HDŽ$Ht H/ H|$pHDŽ$Ht H/ HD$pH|$xHt H/u H 1`DHD$xH=^%AHL$pHT$xHH$觻HD$H#H9PHH$LMIHfHD$MLL$HI5LHH$HHD$ HLD$ HHD$H$H/u HDŽ$I(R H$Ht H/H|$xHDŽ$Ht H/HD$xH|$pHt H/HH$HD$pH$H$H=0ILD$ HLD$ }LD$HD$]LL$(LD$ hHLL$(LD$ 'LKH$IHwcLHD$HHD$pHVH$HD$pHDŽ$HCNLGHELEIt$HiLLL$ GLL$ LGLGHH0H;0HHH0HH0OG#HD$(@GLL$(LD$ DKDDLD$GD$/LDLDLD$FD$IwHI|$HHDLD{LHD$ |FLD$ IuHmLEHK[FLNFLAFHD$ E1E11HD$A2A'HD$8HD$0HD$(FH=gH H5!I{HD$ E11E1HD$A̡A0HD$8HD$0HD$(DDRH=IHcI HD$ E11E1HD$A4A'HD$8HD$0HD$(n)NI EE(DDILl$L9d$PHl$XL|$`Ld$hH|$HCH$HtkH51葪H$H$H/2H$HDŽ$HT$H HHD$@HHHDŽ$HD$ E1HD$HIDDzHD$ E11AHD$A1HD$8HD$0HD$('A A5E1HD$ HD$HD$ E11A7HD$A'HD$8HD$0HD$(yLLD$ IWCMCoCCJA8DP,C,"CEC^LHD$ CLD$ y.AHF(HJ(H)0HLcJ4LN(L;(}INL(HJ(H0I@HD$xHIXHHI( HD$xLd$pIH$JBHD$ E11E1HD$ALA'HD$8HD$0HD$(OH=pHH5IHD$ E11E1HD$A)A8HD$8HD$0HD$HD$(LAHD$ E1E11HD$8AAdHD$0HD$HD$(H=HիH5֫IH=]IHD$ E11A+HD$A8HD$8HD$0HD$HD$( ILD$IHD$ E11E1HD$A6A9HD$8HD$0HD$HD$(cIIH=I2@(DDL@LD$ @LD$HD$ E1E11HD$8AAdHD$0HD$HD$( ?wA)H=HNH5OjH#}?s?]Hf?HD$xHD$0ZH@0HH@(HH(H+0H0xHD$ E11A8HD$A9HD$8HD$0HD$HD$(.>?>X>n>A8DHD$ E1E11HD$8AAdHD$0HD$HD$(A+[GH=HHD$ E1E11HD$E1AA*HD$8HD$0HD$(9HD$=LD$gHGH$HHWHHH|$xHT$xH/ H$H|$xH$|=HD$ E1E11HD$8AAdHD$0HD$HD$(HD$ E11ABHD$A8HD$8HD$0HD$HD$(5HD$ E11E1HD$AA*HD$8HD$0HD$(pHD$ AAdHD$ 1E1AߡHD$A0HD$8HD$0HD$(HD$ E1E11HD$AUA9HD$8HD$0HD$HD$(CL;;LD$ |HD$ E1E11HD$8E1AAdHD$0HD$HD$(H=HH5TIADA\A9E1HD$ HD$W6;A H$H/ Ld$ AkHDŽ$HD$8E1E11HD$0HD$HD$(!:qHD$ E11E1HD$8AAdHD$0HD$HD$(RH= IHD$ E1E11HD$AàAHD$8HD$0HD$HD$(nH=H(H5) IOH9HD$ E11E1HD$AWA9HD$8HD$0HD$HD$(HD$ E11AYHD$A9HD$8HD$0HD$HD$(HD$J9LL$AnAaE1E1HD\$XE11H$H$DT$PE1H$LL$HLD$@LD$@LL$HHD$ HD$DT$PHD$8D\$XHD$0HD$HD$(p8gHT$0L1H HH HD$xH;D$c HD$xHD$8HD$(88%.88HD$ E1E11HD$E1A_A(HD$8HD$0HD$(0HD$ E1E11HD$8AAdHD$0HD$HD$(LLD$7LD$nHD$8HD$HD$(PLd$ E1E11HD$8AlAkHD$0HD$H=8 I HD$ E1E11HD$E1AˢA>HD$8HD$HD$(麺HD$ E1E11HD$ArA)HD$8HD$0HD$(tHD$ E1E11HD$A΢A>HD$8HD$HD$(/H/////MH$16MH$11"t/HD$ E1E11HD$AբA>HD$8HD$HD$(H=LL$hLL$I&H=|HLL$H5LL$IHD$ E1E11HD$AӢA>HD$8HD$HD$(j.HD$ E1E11HD$AעA>HD$8HD$HD$(>:.HD$ E1E1AڢHD$1E1A>HD$8HD$HD$(-HD$ E11E1HD$AA)HD$8HD$0HD$(mAA)$-HD$ E11E1HD$AA)HD$8HD$0HD$(鋷HD$ E1E1AHD$AHHD$YHD$ E1E1AHD$AMHD$'HD$ E1E1AHD$AMHD$HD$ E1E1AHD$AMHD$öHk, AH$H7H/-@,#H=HH=pHH5HH5Hv<H\$ph.ZE1E1H H=E1HD$pAHD$ A@HD$HD$ٵHD$ E1E11HD$AܢA>HD$8HD$HD$(>+54+*+ +L+[ +{*VH5HkH\$x|+YE1E1H H=E1HD$xAHD$ A<HD$HD$8HD$HD$(鼴Hd*Z*`P*HD$ E1E1AHD$ANrAE1E1E1HD$ ANHD$FA/E1E1AKAS$H|$1A`AEIHHD$D\$HE1E1H$H$DT$@HH$iDT$@D\$HE1HD$ HD$HD$霳ATAD9)|/)%) HGH$HbHWHHH|$xHT$xH/\H$H|$x1ɺ)(AMH$H/+HD$ASE1E1HDŽ$ڲT$(T$X1Ql(rb(HD$ E1E1AHD$AHHD${Q,HD$pIH)HaHHVHD$pHPHT$HBH; eHIAD$ A@u<L<DAHD$pIT$HHDŽ$L` HLjCHHHD$pHP(H503H$IHH@H;ld I$L$Ld$xMH$H/Ht$xHDŽ$F @u<<EHD$pHVHD$xHp0HLHH|$pA9HٛACHHG8@HD$xIHyH|$pH/`HD$xH=$H$HD$pHDŽ$H$ HD$pIHUH|$xH/HD$xH|$p1H|$pH/HD$pA֣AIHD$ E1E1E1HD$HD$AAHHD$ E1E1AHD$AMHD$ȯHD$ E1E1AHD$AN韯HD$ E1E1A HD$ANvHD$ E1E1AHD$ANMHD$ E1E1AHD$ANE1E1E1A HD$ ANHD$H=IH=HNH5OZIHD$ E1E1AHD$AN陮H=IH=HH5IaAA<E1HD$ HD$HD$8E1E1AȤASHD$HT$HHD$ H`AE1E11HD$ A@E1HD$HD$˭v#`l#qHD$ E1E1AHD$AKHD$酭H;_LPXI# #HD$ E1E1AƣHD$AJHD$$HD$ E1E1AѣHD$AIHD$H;]mH5L IMHD$ E1E1AHD$AKHD$霬iH; _H|$PXIL$MAHD$ E1E1AHD$AJHD$7HD$ E1E1AHD$AJHD$H;\sH5H|$Ie!DT${!DT$AfDAWHנfAVfHnAUATIUSHHHhHD$PHNZ)D$ fHnflH<$HD$XHD$0)D$@HHL4H H(HHHIHD$ HL-8H< 1HH9L;luM,Ll$(M HHUHl$ L|$0IfHHFHIHD$0HFHD$(HHD$ HgHl$ Ll$(L|$0HQ L(hE111HALAIH H8sH  El$L(hHE11HA1AHHH89H=Eu MHHH5L۪"H=[L(IHLH,)HH Im-H.H H9H-HnHHLZMI@LD$LH5HHLD$IMI( HYI9EHt$HLHD$@Hl$HXMIMI(IVH;[H=]8IFHkHHHIcVHHcHHEHLHHHIHHIHH#H \H9HHCH3HL/MI@LD$LH5HHLD$IMI(> H'~IHH{WI9FHt$HLLD$PLD$HD$@Ll$H'LD$MII( MNI* HWH9C Ht$HHIL\$HL\$HD$@L\$II+hM I.L;"XL;W L;W LLT$[!LT$AI*2E4H5H=1#IHO1HI. .Lt$$$t$fDHHL~L|$0o.LnH.)l$ fDHIL=%1Ho fHH9{L;|uIHD$ HI H]HDH AAHHUH6H5:ATL H81o"XZH ; H=}E1-HhL[]A\A]A^A_HH HAHMEIvL=V@LmMt$AE.E H=Ae AȀA]\f(f^f.f(QYH٤E1XYf/ H$HE1LH=GTALHpILj55ɝj5YATj5OULT$PHPL$HH I*-I,$t`IHmtDMIm{LpnH`HPH@fD1LI+Hu@LmL=M1HI9L;|uIHeHD$0HLnHHILl$(HD$ 8fDIE0E1HD$@JtI9HTI9EH9Fe]A} b~ IUH;VHFI}H9AHAt HE] DV DD@@8A I}HA gL^0HHA@IEDA A DDE9u4H*HL$HHL$fDII9HD$(UHHH RH5RL jAH ,H*H81s^_LiRM9uuL9usLLT$HL$|HH]H;QRHL$H;=QuLT$L9%H/hO,LhIG01HD$DHtI9HcRI9GH9F A ~ IWH;VHFIH9AHAt HE_ DV DD@@8A IHA@HE|$A L^0HHA@IEDA AO DDE9u2HHL$HHL$@HI9fDLiPM9uuL9uuLLT$HL$HHt^H;YPHL$H;=OoLT$L9aHL$H|$HL$H|$H/dVyeHJfIoE11 UH H=^MDI,$E1D1Mo0fHtI9HPI9GH9F A $~ CIWH;VHFIH9AHAt HEW DN DD@@8A )IHA@IEA  LV0HHA@IEDA}AF DDE9u4HHL$HAHL$fDHH9fDLNM9uuL9uuLLT$HL$0HHt^H; NHL$H;=zM7LT$L9)HL$H|$:HL$H|$H/Vy*HD$ H H AIE1 ufDLHL$ HT$@MLL H rLHL$H|$aHL$H|$fI}HA@HE|$\DL8LL\$LT$L\$LT$LL\$L\$LCMLsIIH+fInfInHt$@LflǺLD$L\$)D$@LD$L\$II(LL\$LT$uL\$LT$D@LP LLD$;LD$fD$HL$"D$HL$|@LcLHt$HL$ HL$Ht$zdHHL$Ht$ Ht$HL$T4HLHvHD E1 fDE1 ]fDL()E1 fDE1 ffDD$A E1I*t2MtI.t7t$H ZDH=*L fDL H5ߓH=81asIH 1H[ImE1 DDiD$HL$ D$HL$D$MA E1I.!1L HH+E1E1E1HLD$L$ LD$L$MtI(tMLL$| L$LHt$HL$T HL$Ht$@HHL$Ht$+ Ht$HL$!D$HL$ D$HL$HvHIH_D$E1E1A HMHH2E1H=1H:uH5;uILHt$HL$| HL$Ht$KHHL$Ht$S Ht$HL$"LLT$? LT$HvHIH.LD$IuH=UI+D$A H+E1E17LLT$ LT$"MUM>MEIIIm&fInfHnLǺflHt$@LT$LD$)D$@pLT$LD$II*LLD$L LD$D$͒E1A JDDfL D$ђI.AA  H; ELJ IDDfD$ԒE1A IMDDD$גHB`LPI +H=݇HrH5r2IH=ID$A 1.HDDD$E1A H=dHMrH5NrI DDD$A LD$IH=ILE1 0D$A |MNMMVIII.fInfInL׺flHt$@LL$LD$PLD$LT$)D$@LL$LT$LD$II)LL\$LT$LD$L\$LT$LD$D$ME1A D$LA D$A LLT$LD$gLD$LT$ LLT$LL$LD$2LD$LL$LT$HL\$LD$ LD$L\$0nAYF I *E1E1f(T$\$T$\$`AWHAVAUATUSHHL5BL ߋHD$PH-@ L%-HD$XH8HD$`HpH<$HD$hHD$pLt$0LL$8Ld$@Lt$HHLHw HHHcHHFHD$HHFHD$@LNL.LELL$8Ll$0HtaHHgHMHN~LHLD$L\$IL\$LD$HIHD$8ILl$0ML}L%9M1@HI9 L;duIHIHD$@M~TL}L%^MT1fHI9{ L;duIH&HD$HIM,Ll$0LL$8HD$HLd$@HD$H= tLL$XHD$PH5sHWH9{ LAL9k LXM MZM~"1ILH9B L99 HI9uHt$X1<HB8HH+HHh HsH ziH9H HaiH HL=MiMl IGH5A}LHH HIHH IHHHIH!H+L;=?L;=>?M9L ÅI/H'rH hH9H^HghHHL=ShM"IGH5O|LHHDHIHHWIH HHIH_H+ L;=>L;=T>M9L ÅfI/< HL9 H%?I9D$H9CF>A|$ -{ DIT$H;S*ID$HKH9@H@t HED$ { D8A IL$0IHA@LE@ HK0HsH@HEȃ$5A $>9HtLHTm@H$LD$LH=E<LHpILEIHI/oLbf.HMHHkHcHfDL.LALl$0LAMMH1LHLD$L\$L\$LD$HI(HD$0IZLt$LfLd$@LNLL$8L.Ll$08@Lt$ߐLt$fLt$MM9H$LD$LH=t;HHpHH܊IHK H+ fDHmHĈL[]A\A]A^A_M9uM9uLLIHH;k;L;-:u M9 Im LD$L\$LH\$L\$L\$H HL$0HT$PILL yHˆ'gI/=L;5HL9 HD;I9D$H9CA|$  {  IT$H;SHID$HKH9@H@t H"ED$ { D8A b IL$0IHA@LE@ > HK0HsH@HEȃP a A $>9HtLHsH$LD$LH=9LHpILmIH AgA7$6HfDL>H^HDHHqIH oHHIHH8I?SIH5ZH8L A1X>gZH H=E1KfDM9uuwL9uunLHIH H;c8L;%7 M9 LI,$ Q H$LD$LH=]8HHpHHIHA9Ag$HDHH9t4HuH 7H9t#HHL9tHuI9fDHOAHY1 uHoH=<LL$u>LL$HLH HHuH5H5H8H 4lgE1H=ID$0LD$1HD$ L\$H\$LMI@NlM9*HC7I9GI9EA A} IWI;UIEIwH9@H@t HEW EM DD@@8uzA IHA@HE|$ A Iu0IHA@IDDAALDDE9u%Ht?H{jDIL9L\$H\$c@LD$L\$LH\$IDLHL9u,LHKIH H; 5L;%4&M9LbI,$]HHA5Axg@DDE1H H=DH=yvH]H5]I1fDLH=AvI@AzgA5I/rLeDHID$0LD$1L\$HD$ HLH\$ILIfDOlL9Hc4H9CI9E{ KA} XHSI;UIEHsH9@H@t HD[ EU DD@@8A H{HA@HE|$ A Iu0IHA@IDDAUADDE9u*HHfDIL9LD$L\$LH\$@L9uuM9uuLHIHtH;_2L;-1M9LImnLD$L\$LLH\$yJL\$LD$fLD$L\$Hbg#fLD$L\$LLH\$IfA5A}gH+HDAgA5KHFHD$HD$HDL"gfDH[A:Ag_H=rHZH5ZNIfDkHH=rIq@AgA:{LD$,D$,PA:AgLLAgA:IuH?IHH=ahL9HEt H;0HIHH=}Ht$XL|$XHD$PIHlI/1LA@A4hI.LLD$,D$,%HLxIuHH{HL\$LD$jLD$L\$Hg'I,$LGDDI,$LrDDA>AhDDAgA<2L\$LD$LD$L\$H' g|DDFLA;AgTHlHsH-Md$H LG^A6AgH&GHsHMd$HLA $>A $>A $>A $>HpIHzAAA%hA/hA@H 9A%hE1H=7貿5ff.fAWHofAVfHnAUIATUSHHHH$HX))D$pfHnflH|$HDŽ$H$)$H(HL4HOHHHHIHD$pHL%8oHD1HH9L;duM$Ld$xM HHLeL=jqM1DHI9L;|uIHH$H4fH>HFHIH$HFHD$xHHD$pH-Ll$pLd$xL$kHH\LvL$oLfL.)T$p1fDLfHHILd$xHD$pHLl$pL$Hz HD$@HD$HHD$PH(HD$XHD$`HD$hhE111HALHHH8H$zD}H(hE111HALHHH8 Eu sH5mHyH5jHxKH)HD$I9nHs\H=VH9xHVHHL=oVMIGH5eLHHILl$@MI/H[H=VH9xHUHHL=UMIGH5|gLHHILl$HMI/iHu'H|$@HD$ H9G'HD$HH$HDŽ$L$H$IH|$HH/H|$@E1HD$HA AߎMH/SL|$@I?2HD$@E1HwAwI HHLLwHD$(1AIHHD$HH;D$Mt I,$IEH5 mLHD$HHHHH|$HHLzvHD$@HH|$HH/gHD$HH|$@H/EHD$L% dHD$@LLMpLD$LHD$HH@LD$HHH|$LLHD$H$HD$L%gcLLMpLD$LAHMEInfL5"t@L@u{HH0H;0HHH0HH0HcI E1LMMtImuLHt HmH=y25HF(HJ(H)0 HLcJ4LN(L;(}INL(HJ(H0fDH@0HH@(HH(H+0H0Lf.XLD$rLHD$@H9x H>H HL=>M IGH5>NLHH HD$HH I/tIEH5VLHH IM H&DH=>H9x H>H HL==M H5OL:HD$PH I/PHH|$HHD$ H9GV HD$PH$HDŽ$L$H$LHD$@I,$H|$PH/L|$@LT$HHD$PA A(MI*HD$@HD$HHH|$@H/^L|$HMHD$@HD$HHL$pMLHH$L ]LL|$@tLWH{HA@HE|$(oJ@6taH=QHc<H5d<IgIE`H +YE1H=A ALT$HHD$@ڍH|$@E1E1A ALD$ TD$ LCH&LH|$@E1E1A AHD$HLIt$HHH|$HL1H=PH:H5:VIWH|$@E1A AŽ`I]A AĎ@I/tH|$@E1DLE1H|$@H=|OOIH LAbH8HD$HH|$HHD$HHH|$@A \DDLD$ D$ H|$H|$@E1A AǎGHzH|$@E1E1A' AfLLLIt$HRIH.HH|$@E1E1A( A iH=*NIA AɎ\ILofLXhH|$@E1E1A) AHH|$P)-;LgMHGI$HH|$@HD$@H/ HD$HfInH|$@fInflH$H$)$貚I,$ILIt$HDMOH!H|$@E1E1A* Ac H5=HhLl$HH|$@A AQ2HDDfLT$HA ASLDDaH LA`A H8H|$@eLL|H= LH6H56aIGH|$@E1A0 AԐ@HQ LAH8xHD$PImH|$@E1A4 A9DfH$1)$HD$@H=`K3IE1A0 A֐ILH|$@E1A0 AِtH=KH5H55ZIH$11\*LOLBH|$HH$1DDH=J`I`H|$@E1A0 AېIkE1A0 A~HGHD$HHHWHHH|$@HT$@H/iHD$HH|$@H$W{LnnHZLA4 AH8{H|$@A9D/A H|$@H|$@A AԏG%H|$@A AqH=2IH3H53臝I5H5(:HeALl$@Lvi|I^H=H訚IA I/LA E1/H|$@0LA4 E1 H|$@H|$@E1A A H=XHH3H53譜IMAmH=(HII,$tA ASLAA t7H|$@A4 An LQ\H|$@E1A- A0.LwMHGIHH|$HHD$HH/HD$PfInH|$HfInflH$H$)$”HD$@I.lL_H$1oH|$HHt H/(HD$HH|$PHt H/H . ]HD$PH=-pH|$ HL$PHT$HHt$@9LHL$PHT$H1Ht$@Hi1HLHD$(-I/L\$(II+M*L;EL;L;T$|LLT$LT$AI*kEHt$@EQHt H. HD$@H|$HHt H/rHD$HH|$PHt H/HD$ HL$XHD$PHT$`Ht$hHVH$11A2I/tZH|$@E1E1A- mAFܾҍMH|$@A AFBH|$@E1A- A)LE1E1A- eH|$@ VLH|$@E1E1A A&%I*DL LLT$(LT$("LHD$0LT$0L\$(AsHD$ HL$XE1A- HT$`Ht$hHUH|$@JA|AwH|$@A A`$AH|$@E1A AbxHFA1H|$@A4 ALt$PLd$HHt$RHt$LHLAy8HD$@HD$HHD$Pff.@AWH/FAVfHnAUATIUHHHxSfHnHflHxL bIHHD$`H_IHD$hLL$0HD$8HT$@)D$PHL,HHHLL}LL$0MLMLzEM1DHI9L;DuIDHHD$8IMdLMLEM1@HI9KL;DuIDH^HD$@I+HVHFLL}HD$@HFLL$0HD$8MLL$0HD$8LT$@L5yHI$It$H=AHEH8HAVjR5Gj5iDPjRL4NIHEHPMHHEtvHxL[]A\A]A^A_@H,HHL5MLLL$0IfHuZLVL5LT$@HFHD$8H0fDL}MkLT$@L5of.H AHHH٫H5vSL HH81X|ZH XH=ƝE1֐L5MxHFHL}HD$8HT$0HH dHUIHII?IA[fDLL$0#fDI@0E1HD$ @JtI9"H;I9@H9F Ax Z~ IPH;VHFIxH9AHAt HEp D^ DD@@8A }IxHA@HE|$ A ULv0HHA@IEDAADD6E9ucLL$LD$Ht*LT$HaLT$LD$LL$u/fDKDwfDL5AM9uu L9utIM9DLǺLT$LL$LD$HHD$`H>HD$hLL$0HD$8HT$@)D$PHL,HHHLL}LL$0MLML:M1DHI9L;DuIDHHD$8IMdLML:M1@HI9KL;DuIDH^HD$@I+HVHFLL}HD$@HFLL$0HD$8MLL$0HD$8HT$@L5HI$It$H=QAHEHAVj5a-5#=j59Pj5B4CIHEHPMHHEtvHxL[]A\A]A^A_@H,HHL5"LLLL$0IfHuZHVL5HT$@HFHD$8H耷fDL}MkHT$@L5f.H 9AHHHUH52lSL H81hXZH H=FE1&L5ILxHFHL}HD$8HT$0HH HIHII?IA[fDLL$0#fDI@0E1HD$ @JtI9"HI9@H9F Ax Z~ IPH;VHFIxH9AHAt HEp D^ DD@@8A }IxHA@HE|$ A ULv0HHA@IEDAADD6E9ucLL$LD$Ht*LT$H豸LT$LD$LL$u/fDKDwfDL5M9uu L9utIM9DLǺLT$LL$LD$茵HHH;aLD$H;=LL$LT$eL9\LT$(LL$LD$H|$胺LT$(LL$LD$H|$AH/bEJKH7HHEH ɛq цH=bEL5iLgH0LHrIHHD$0I~@HL$0HT$PILL ݡH>*I@0E1HD$ @JtI9zHI9@H9F-%Ax 2~ eIPH;VHFIxH9AHAt HEp D^ DD@@8A LIxHA@HE|$ A =Lv0HHA@IEDA(A8DD6E9u{LL$LD$H~LT$E1H躵LT$LD$LL$Au<EyK6HAz"L5M9uu L9u+t'IM9KDfDLǺLT$LL$LD$tHHtH;MLD$H;=LL$LT$u}L9txLT$(LL$LD$H|$wLT$(LL$LD$H|$AH/&E AD2HsDfHLT$LL$LD$LT$LL$LD$vLLT$(Ht$LL$LD$贮LD$LL$Ht$LT$(nCHLT$(LL$LD$Ht$tHt$LD$LL$LT$(8HvHIxHLT$LL$LD$,LT$LL$LD$LLT$(Ht$LL$LD$LD$LL$Ht$LT$(HLT$(LL$LD$Ht$语Ht$LD$LL$LT$(cSDD6 IxHHvHDD6DD6DD6AWH71AVfHnAUATIUHHHSfHnHflHxL 4H3HD$`H3HD$hLL$0HD$8HT$@)D$PHL,HHHLL}LL$0MLML0M1DHI9L;DuIDHHD$8IMdLMLA0M1@HI9KL;DuIDH^HD$@I+HVHFLL}HD$@HFLL$0HD$8MLL$0HD$8HT$@L5HI$It$H=AHEHAVj5"5s2j5s/Pj5:*8IHEHPMHHEtvHxL[]A\A]A^A_@H,HHL5rLLLL$0IfHuZHVL5OHT$@HFHD$8HЬfDL}MkHT$@L5f.H AHH@HH5aSL H81踴X׈ZH @ H=ƈE1v{L5LxHFHL}HD$8HT$0HH HIHII?IA[fDLL$0#fDI@0E1HD$ @JtI9"HI9@H9F Ax Z~ IPH;VHFIxH9AHAt HEp D^ DD@@8A }IxHA@HE|$ A ULv0HHA@IEDAADD6E9ucLL$LD$Ht*LT$HLT$LD$LL$u/fDKDwfDL5M9uu L9utIM9DLǺLT$LL$LD$ܪHHH;LD$H;="LL$LT$eL9\LT$(LL$LD$H|$ӯLT$(LL$LD$H|$AH/bEJ蛮H7HHEH  H=xL5LgH &LHhIHHD$0I~@HL$0HT$PILL 5Ha3*ÈI@0E1HD$ @JtI9zHI9@H9F-%Ax 2~ eIPH;VHFIxH9AHAt HEp D^ DD@@8A LIxHA@HE|$ A =Lv0HHA@IEDA(A8DD6E9u{LL$LD$H~LT$E1H LT$LD$LL$Au<EyK膬HA"L5M9uu L9u+t'IM9KDfDLǺLT$LL$LD$ħHHtH;LD$H;=LL$LT$u}L9txLT$(LL$LD$H|$ǬLT$(LL$LD$H|$AH/&E AD肫HDfHhLT$LL$LD$LLT$LL$LD$vLLT$(Ht$LL$LD$LD$LL$Ht$LT$(nCHLT$(LL$LD$Ht$ģHt$LD$LL$LT$(8HvHIxHLT$LL$LD$|LT$LL$LD$LLT$(Ht$LL$LD$PZ蕢ZW*PBDIL9uH[]A\A]AWAVIAUL-?ATL%GUHSH7H(IFI>L$HcT$\$L$%OD$Yf(Y蝞T$L$f($YD$Xf/wAI>AVfII LH!H*AYLtfW OI94?H(f([]A\A]A^A_@IFI>fWN: NI>Y $AVfWN $fWNf(XYf/vX NAzfW iNm@H~CAUIATIUHS1HfDLXADHH9uH[]A\A]DAWAVIAUATL%-UH-1SH)HDIFI> HcL$ \D$%MfAnfZAYAf(YœL$ f(fA*Y7MYD$XZf/wDI>AVfAA A*AYfA~t W/MfA~D9l/HfAn[]A\A]A^A_IFI>f*YLWL` LI>YL$AVf*YtLWL(L$WL(XY/vX OLAfA~RW jLfA~AH~CAUIATIUHS1HfDLhADHH9uH[]A\A]DUHH0f.8D$d|$ff.8=f/|$@H}UHD$ t$T$\f/r5 D$f(^z\$f/rH0]D$L$ \^D$M|$L$ D$f(Y\f( K^ T$\$\f/(H0]f.|$\= K KY|$(ff.2Q5^t$@H蠡ff(D$YXf/sf(L$H}YYD$UL$Jf(YYYc\f/wbL$ &D$D$%5\d$f(L$ f(X-JYD$(YYXf/D$'D$(YD$H0]DH0f]H0]kfDUHH .1ID$ud$f.R= I/|$%Hd$H}UfH*YT$T$ 蚞 Ht$T$ \/r- HD$ (^3\$ /rH ]fD$rHL$\^D$͞|$L$D$ (Y\( 5H^̝T$ \$\/#H ]Dt$\5GfGYt$.;Q=Gd$^|$Hf(D$YXG/s(L$H}YYD$ UL$rGf(*YYD$YY>G\/w_L$蚝D$D$ 艝=G\|$ (L$(XGYD$YYX/D$D$YD$ H ]@H f]H ]p˛%Fff.HHH?PHHff.HHH?PHff.HHH?PHHff.HGH?f.pE„f.uFf(D„USH(-]Ff/Kf1X AF\$^T$YYX )FY\ %FYX !FY\ FYX FY\ FYX FY\ FYf(L$bL$X ET$f(5E\$^f(\lEf/YX EX\vHH~CH@\ L$Hf(T$ߖL$H9T$\uH(f([]f(f\H,H*Dff(ff.@H$L$lYD$X$Hff.HD$葔YD$HfDHHH?$L$PYD$X$HHL$葓YD$HfDHL$ YD$ HfDUHH0D$ f/L$(f/f(4Df/vf/@H}UH}D$U |^L$ D$D$- ]^L$(D$D$XD$8f/rL$XL$ff/vf/L$H0]^f(fDD$ HbHD$D$(NL$X^H0f(]H?U\$ Hf(D$(XYfHnf/wfD$Uf(D$^L$ L$:L$f(^T$(T$ f(_\\$f(L$#\$T$ D$\f(XD$ٓL$H0]\f(HYAOHXfDUHH $D$ؗ $Hf(Yf($躗\$$H]Y^f(ff.fUHH3HD$%L$H]^f(ÐHD$Q^D$HBff(ff.z uHT$ T$H^鞒ff.HD$~ i@fWД~ X@fW ^L$HMff.fSHH$L$ ff/wFH;Sf/`@r ^@\\f(L$Y$H[\@XߑYD$X$H[ff.AVfI~SHHL$H;Sf(\f/vfWW?rL$H[YfInA^\SHH$L$DH;Sff/v H\^YD$X$H[fH7Hff.HD$!fXf.wQYD$H菗ff.fUHHD$荕L$HY >$f(L$L$ff(f.w!QY $f.w1Q^H]f(D$f(T$ff(f( $ $f(ff.AWf(AVATUSHH@f/ED$f.=zuE1H@L[]A\A^A_f.D$fWr=E1誌 D$f.IL$H;SL$Yf/L$wH@L[]A\A^A_fDff.-Qf(D$L$L$Y =X =D$0=Yf(L$ \ =\-=f(=\%=^ =f(d$8XfI~X|=fI~w=^\fH~f.H;SH;f(\<T$ST$ <D$f(fT\fIn^L$XD$ YXD$X=ғL$f/ <L,\$rfHnf/M_5<f/v f/Gf(L$(訍D$fIn蘍L$(t$8D$D$ Y^Xo|$ID$X|$f(f(\fI*YL$0\L$D$fH*L$L$\f/L$H@L[]A\A^A_D$ғf(fUH\^f(CH]*f.AWfAVH*AUIATIUSHH$t H9r Me$AEf(\A}|$Pf/t$H# L$PT$Yf(fD$HAEX\$AM(f(L$ő\$Y\$HH,fL$T$f.Im0f(\$h Qf(Y:\$HY:%-:\f(fTf.059d$PXf(t$(fD(D$AE8ffA(H*XXa:Xf(Am@$A\f(\$xA]P5:Y|$8^f(A}H\X:fD(\$@A]Xf(\^f(YXYf(Yl$H\\$`^A]`Yf(XYfA(AXXL$pAMhAYf(D$AEpfA(^D^Xf(D$XAExfA(XD$ AMl$LH)H$fH;Sd$ H;Yd$Sd$f/d$f(Vf/d$"t$l$@fH*\YT$0f(^XXD$8\X\$(fT^\f/L$[&L$T$0L,MI)LH?HL1H)H~#D$hYD$(fH*\f/fd$P^d$HI*YI94f(jf/$M)f/L$(MGH[]LA\A]A^A_Df.6ADEf/d$Xwcd$0D$r^D$`XD$81L,MSEJd$0\d$L$XYYL$`d$0D$\$x^D$p\f(ƍL,M9EL$d$0\d$XYYL$pqfDHEI9IVf(ff(H*H^\YH9uIFH9HUff(H*H^\^H9uWf(^l6t$hHXc6HHf(XYXP6^^XT$(YfH*^f(T$0\$Ć\$T$0f(f(\f/Xd$0f/IFfEfEL*HEfEL*LfL*$L)HH*fE(D$EYfA(fA(D$A^fE(D$AYEYfD(l$DYD$$D$D$΅D$$D$fA(^D$衅T$HD$$t$Yt$PAYf(^j=454L$-4H)f(f(D$D$^d$0D$DY$D$D$D$D$\f(^\A4fD(^D\D^ .4f(A\fEL*DX\$(DY$A^D4EXfEM*AYDXf(A^A^AXfD(D\f(E^A\fD(A^D\f(E^A\fD(A^A^Xf(A^A^D\f(E^\A^A\fD(A^\A^D\f(E^\A^A\A^\^L$A^A^XXf/f($YT$\X(L,~fDH,ffUH*f(fT\fVf(f(t$P\l$Hf( f.Bhf/B]J8rz Hj0L$J@Yt$P50$JH|$HL$8JPYt$(L$xJXL$@J`L$`Jh\$hL$pJpL$JxL$XL$ D$hT$L$T$L$Ff.AUIATIUSHH8D$t H9rWd$-fMeI*AE\AeAm f($l$老$Y~d$$L$f(AEfYYAeXX ef.Q-f(YXf/aH,Im0$H;S$1f/f(vp@HH9})$H;S$f/1f(HH9|Lf\H)HH*YT$YfH*YT$^f/wH8[]A\A]Ðf.Bf/Bz ZHj0|$9H81[]A\A]f(d$(\$ T$ $d$(T$-o $\$ YXf/f(l$ d$$訆$d$l$ f(YXH,ff.Hf.-Eur-fUHH*f/rY.f/rM]韅X\.Yf/f(r&qIH]L)fD1D]|f|IH]L)UHH$f(L${L$ff.$f/v]f(HL$\f(˂H$nL$ff(f.~QX$H]YXY p,Hf(|fHHH*X$H]VfD-H]fB$HH](D$f(詄T$f(hf.UHH $f(D$t$$Hf(Yf($Ɓ\$$H]Y^f(ff(f(SHXf(H ^L$\$l$\$L$Y ,f(YYYf(YXff.w\Q\YT$\$H;XT$S\$T$f(f(X^f/s Y^f(H f([f(\$T$R\$T$f(UHH@D$8f(L$y+f/D$+f/D$s+|$f/ +- ft$Yl$YXf.Qf(XL$f(Xf.JQ\T$f(f(X^f(YXXL$^L$0&f(^S{XD$L$ \f/D$sH}UY*{\$0H}f(YXXL$f(L$^\d$(YL$ UL$ f()\Y\f/D$\H}UD$D$({f((f/D$vfWh(XT$8 B*f(fTT$X*zt$T$\)f/vfW(H@]H}UX\EY)H@]f$^D$f.QD$H~YD$ )XD$8f/vX)f/X)q\j)dD=f(|$|$^Xf|$D$0(>D$qf(L$ $L$ f(f( l$f(hff.fSHH0D$ fW&EyD$(H;Sf/D$ D$H;SYD$({T$f(fW&Yf/~f(T$\$x\$D$f(|xL$^X1~L,MaT$ff.E„EH0L[f/ArA@H,HH?D$\$PL$$f(f/vf(fDYHXf/wHÐHD$u~y%T$$fWf(w~Y% $f(fW&f(^f(fTf.v3H,ff(%YfUH*fTXfVf(f/SHsH,HDf/%rzrff.AVSHH(\f(D$$vD$H;SH;D$S%\d$fI~ ^L$f(Tv=%f( &fTf.v;H,f=]H*f(fT\ %fUf(fVf/K]5f/Kf(L$T$^XuT$l$f(fInYf(\^Yf(\^f/H(H,[A^f.f(f(H8H\\T$H?L$D$(f(d$^l$ 4$P4$d$L$T$f/r;l$ \$(Yf(Yff.wPQXH8f(f(\ \fYYf.w*Q\H8f(f($k{$f(f($R{$f(1HATIIUHI SHLHI LHL IIL III LH I ĸH9wfDH;SD!H9r[]A\DH;SL!H9sH;SL!H9rf.ff.@AWAVAUATIUSHHttHHH?IIH9wqHEAEDjAME9v,D1AAA9sH}UAME9wI IHL[]A\A]A^A_@HEHEuQLbIHHI9v+L1HIIH9sfDH}UIHI9wHL$DHEH}L!I9rL$oDHEH}D!D9wL$ODЉI>@I0fDAWAVAUATAUSHteHGIH?AEu`JL$ Dl$ AME9v%1AAA9sI>AVAME9wI AHD[]A\A]A^A_@IFI>D!9rD$f.AfAWAVAUATUSHt$H\$PfA։IAMfAAEEF-DD$ H?AUDD$ A$3EAfA9v^AAƙAAf9r&ID3A$xA<$3AfA9v%uI}AUA$3AfA9wD$H[]A\A]A^A_+A$PA$D!f9s!uI}AUA$D!f9rfD$H[]A\A]A^A_fuDH?AUA$D$fH[]A\A]A^A_@+AxA9+A)ff.@AWAVAUATUSHt$ H\$PA։IAMAAEE~H?AUA$3D@A8v^AEAƙAA8r#Ff3A$xDA<$3@A8v%uI}AUDA$3@A8wD$ fH[]A\A]A^A_f+A$PA$D!@8s!uI}AUA$D!@8rD$ H[]A\A]A^A_uDH?AUA$D$ H[]A\A]A^A_D+AxA9+A)ff.@USHHl$ tAHL˅tmA)EH[]fDH?QEAWAVAUATIULSH(HL$HujH~OHHHfInLHHLHH9uHt$HHtLdH([]A\A]A^A_IHH9EH|$~DrE1Dt$D$fI}AUt$I9s$D$19s@I}AUI9wH LJLIL9|$uLf.HEE1HLrH|$H\$fI}AUIHHL9s-HD$1IHH9sI}AUIHH9wHLJDIL9|$ufH|$1fI}AULHDHH9\$ufDH|$n1f.I}AULHDHH9\$uBIII LHI LHI LHI LHI LH I H|$E1fDI}AUL!H9rLJDIL9|$uIII LHI LHI LHI LHI H|$E1I}AUD!9wLJDIL9|$u[1OfAWAVAUATMUHSHt$H~pHAHHfnLHfpHLHH9uHH@t,t$HHHA4H9~HAtH9~AtH[]A\A]A^A_@IӃEDrE1Dt$\$ H~f.I}AUt$I9v$D$ 19s@I}AUI9wH L$C IL9uH[]A\A]A^A_fIII LHI LHI LHI LHA HE1I}AUD!9rD$CIL9uH[]A\A]A^A_ÐH1DI}AUD$AHH9uH[]A\A]A^A_1zAWAVAUATUSLHfHHAHCHfnLHfaHfpLʐHH9uHHt\Hxf4CHH9~KHxftH9~=HxftH9~/HxftH9~!HxftH9~Hft H9}ft H[]A\A]A^A_DIAfHEH~DrII1H$A1D$ ufI?AWfD9s@D$ Af9s1t1fA9vI?AWȉfA9wۿHDfKH;$2t1뒐AHHH HHH HHH HH HM4I11t@1!fA9sI?AW!fA9rDHfSL9uH[]A\A]A^A_@HI,IHDfCH9mI?AWATfHSH9uP1DAWAVIAUATUSH@t$ uVH~>> from numpy.random import Generator, PCG64 >>> rng = Generator(PCG64()) >>> rng.standard_normal() -0.203 # random See Also -------- default_rng : Recommended constructor for `Generator`. Gets the bit generator instance used by the generator Returns ------- bit_generator : BitGenerator The bit generator instance used by the generator Bad call flags for CyFunction__pyx_capi____loader__loader__file__origin__package__parent__path__submodule_search_locations%.200s() needs an argumentkeywords must be stringsexactly__getstate__Missing type objectcannot import name %Sendunparsable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'an integer is required%s (%s:%d)View.MemoryView._erris_f_contigis_c_contigView.MemoryView.Enum.__init____reduce__numpy/random/_generator.pyxView.MemoryView._err_dimView.MemoryView._err_extentsat mostat least__cinit__BitGenerator__setstate_cython__View.MemoryView.memview_slicememviewsliceobjtupleExpected %s, got %.200s__reduce_cython____setstate__logisticgumbelspawnrayleighpoisson'NoneType' is not iterableView.MemoryView._unellipsifystandard_cauchywaldvonmisesnoncentral_chisquarebeta__pyx_unpickle_Enumpowerparetologseriesstandard_tzipfweibullname '%U' is not definedpermutationdirichletmultivariate_hypergeometricmultivariate_normalvhutriangularstandard_gammastandard_normaluniformassignmentbuffer dtypeBuffer not C contiguous.choiceintegersrandombuiltinscython_runtime__builtins__does not match_cython_3_0_114294967296complexnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequencenumpy.random._commondoubleLEGACY_POISSON_LAM_MAXuint64_tMAXSIZE_rand_uint64_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintcheck_array_constraintdouble (double *, npy_intp)kahan_sumdouble_fillfloat_fillvalidate_output_shapecontdisccont_fcont_broadcast_3discrete_broadcast_iiiView.MemoryViewnumpy._core._multiarray_umathnumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is NULL pointernumpy/__init__.cython-30.pxdnumpy.import_arrayinit numpy.random._generatordefault_rngformatcopy_fortrancopypermutedoutnoncentral_fshufflemultinomialnumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3negative_binomialstandard_exponentiallaplacelognormal__module__func_doc__doc__func_name__name____qualname__func_dict__dict__func_globals__globals__func_closure__closure__func_code__code__func_defaults__defaults____kwdefaults____annotations___is_coroutineTbasestridessuboffsetsndimitemsizenbytes__repr__numpy.random._generator.Enumnumpy.random._generator.arraymemview__getattr___bit_generatorL,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,d,,4,,,,,,,,,(,,,,,,,,,,,,,,,p,зXn,,z,,,]@,]26666666666666666666666666666666666666666666666666666666666666666>66666bn66z66666666666666666&6д66J666V6|||ڸǸ|#ٴٴ#ٴٴٴٴٴ##ٴٴ#ٴٴ==#ٴٴٴٴٴٴٴٴٴٴٴٴٴٴٴٴ[-ٴ--ٴٴٴٴٴٴɷܷfff{˸źo{0o000000No0000000000ǹ 77)))dwmhm\mPmDmPwmmuuP8x++B(9(0(,yyPvGv>v5v,vyMyvvwjwy 8Hyy|Ǐ?liؔȔpzqh ?|?<<<B90TD<__pyx_fatalerror00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899default_rng(seed=None) Construct a new Generator with the default BitGenerator (PCG64). Parameters ---------- seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the `BitGenerator`. If None, then fresh, unpredictable entropy will be pulled from the OS. If an ``int`` or ``array_like[ints]`` is passed, then all values must be non-negative and will be passed to `SeedSequence` to derive the initial `BitGenerator` state. One may also pass in a `SeedSequence` instance. Additionally, when passed a `BitGenerator`, it will be wrapped by `Generator`. If passed a `Generator`, it will be returned unaltered. Returns ------- Generator The initialized generator object. Notes ----- If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator` is instantiated. This function does not manage a default global instance. See :ref:`seeding_and_entropy` for more information about seeding. Examples -------- `default_rng` is the recommended constructor for the random number class `Generator`. Here are several ways we can construct a random number generator using `default_rng` and the `Generator` class. Here we use `default_rng` to generate a random float: >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> print(rng) Generator(PCG64) >>> rfloat = rng.random() >>> rfloat 0.22733602246716966 >>> type(rfloat) Here we use `default_rng` to generate 3 random integers between 0 (inclusive) and 10 (exclusive): >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> rints = rng.integers(low=0, high=10, size=3) >>> rints array([6, 2, 7]) >>> type(rints[0]) Here we specify a seed so that we have reproducible results: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> print(rng) Generator(PCG64) >>> arr1 = rng.random((3, 3)) >>> arr1 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) If we exit and restart our Python interpreter, we'll see that we generate the same random numbers again: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> arr2 = rng.random((3, 3)) >>> arr2 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) permutation(x, axis=0) Randomly permute a sequence, or return a permuted range. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. axis : int, optional The axis which `x` is shuffled along. Default is 0. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0 >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr, axis=1) array([[0, 2, 1], # random [3, 5, 4], [6, 8, 7]]) shuffle(x, axis=0) Modify an array or sequence in-place by shuffling its contents. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. axis : int, optional The axis which `x` is shuffled along. Default is 0. It is only supported on `ndarray` objects. Returns ------- None See Also -------- permuted permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> arr array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> rng.shuffle(arr) >>> arr array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr, axis=1) >>> arr array([[2, 0, 1], # random [5, 3, 4], [8, 6, 7]]) permuted(x, axis=None, out=None) Randomly permute `x` along axis `axis`. Unlike `shuffle`, each slice along the given axis is shuffled independently of the others. Parameters ---------- x : array_like, at least one-dimensional Array to be shuffled. axis : int, optional Slices of `x` in this axis are shuffled. Each slice is shuffled independently of the others. If `axis` is None, the flattened array is shuffled. out : ndarray, optional If given, this is the destination of the shuffled array. If `out` is None, a shuffled copy of the array is returned. Returns ------- ndarray If `out` is None, a shuffled copy of `x` is returned. Otherwise, the shuffled array is stored in `out`, and `out` is returned See Also -------- shuffle permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- Create a `numpy.random.Generator` instance: >>> rng = np.random.default_rng() Create a test array: >>> x = np.arange(24).reshape(3, 8) >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) Shuffle the rows of `x`: >>> y = rng.permuted(x, axis=1) >>> y array([[ 4, 3, 6, 7, 1, 2, 5, 0], # random [15, 10, 14, 9, 12, 11, 8, 13], [17, 16, 20, 21, 18, 22, 23, 19]]) `x` has not been modified: >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) To shuffle the rows of `x` in-place, pass `x` as the `out` parameter: >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 3, 0, 4, 7, 1, 6, 2, 5], # random [ 8, 14, 13, 9, 12, 11, 15, 10], [17, 18, 16, 22, 19, 23, 20, 21]]) Note that when the ``out`` parameter is given, the return value is ``out``: >>> y is x True dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------ ValueError If any value in ``alpha`` is less than zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, https://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> rng = np.random.default_rng() >>> s = rng.dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") multivariate_hypergeometric(colors, nsample, size=None, method='marginals') Generate variates from a multivariate hypergeometric distribution. The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution. Choose ``nsample`` items at random without replacement from a collection with ``N`` distinct types. ``N`` is the length of ``colors``, and the values in ``colors`` are the number of occurrences of that type in the collection. The total number of items in the collection is ``sum(colors)``. Each random variate generated by this function is a vector of length ``N`` holding the counts of the different types that occurred in the ``nsample`` items. The name ``colors`` comes from a common description of the distribution: it is the probability distribution of the number of marbles of each color selected without replacement from an urn containing marbles of different colors; ``colors[i]`` is the number of marbles in the urn with color ``i``. Parameters ---------- colors : sequence of integers The number of each type of item in the collection from which a sample is drawn. The values in ``colors`` must be nonnegative. To avoid loss of precision in the algorithm, ``sum(colors)`` must be less than ``10**9`` when `method` is "marginals". nsample : int The number of items selected. ``nsample`` must not be greater than ``sum(colors)``. size : int or tuple of ints, optional The number of variates to generate, either an integer or a tuple holding the shape of the array of variates. If the given size is, e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one variate is a vector of length ``len(colors)``, and the return value has shape ``(k, m, len(colors))``. If `size` is an integer, the output has shape ``(size, len(colors))``. Default is None, in which case a single variate is returned as an array with shape ``(len(colors),)``. method : string, optional Specify the algorithm that is used to generate the variates. Must be 'count' or 'marginals' (the default). See the Notes for a description of the methods. Returns ------- variates : ndarray Array of variates drawn from the multivariate hypergeometric distribution. See Also -------- hypergeometric : Draw samples from the (univariate) hypergeometric distribution. Notes ----- The two methods do not return the same sequence of variates. The "count" algorithm is roughly equivalent to the following numpy code:: choices = np.repeat(np.arange(len(colors)), colors) selection = np.random.choice(choices, nsample, replace=False) variate = np.bincount(selection, minlength=len(colors)) The "count" algorithm uses a temporary array of integers with length ``sum(colors)``. The "marginals" algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It is roughly equivalent to:: variate = np.zeros(len(colors), dtype=np.int64) # `remaining` is the cumulative sum of `colors` from the last # element to the first; e.g. if `colors` is [3, 1, 5], then # `remaining` is [9, 6, 5]. remaining = np.cumsum(colors[::-1])[::-1] for i in range(len(colors)-1): if nsample < 1: break variate[i] = hypergeometric(colors[i], remaining[i+1], nsample) nsample -= variate[i] variate[-1] = nsample The default method is "marginals". For some cases (e.g. when `colors` contains relatively small integers), the "count" method can be significantly faster than the "marginals" method. If performance of the algorithm is important, test the two methods with typical inputs to decide which works best. .. versionadded:: 1.18.0 Examples -------- >>> colors = [16, 8, 4] >>> seed = 4861946401452 >>> gen = np.random.Generator(np.random.PCG64(seed)) >>> gen.multivariate_hypergeometric(colors, 6) array([5, 0, 1]) >>> gen.multivariate_hypergeometric(colors, 6, size=3) array([[5, 0, 1], [2, 2, 2], [3, 3, 0]]) >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2)) array([[[3, 2, 1], [3, 2, 1]], [[4, 1, 1], [3, 2, 1]]]) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : array-like of floats Probabilities of each of the ``p`` different outcomes with shape ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1 dimension where pvals.shape[-1] > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn each with ``p`` elements. Default is None where the output size is determined by the broadcast shape of ``n`` and all by the final dimension of ``pvals``, which is denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it must be compatible with the broadcast shape ``b``. Specifically, size must have ``q`` or more elements and size[-(q-j):] must equal ``bj``. Returns ------- out : ndarray The drawn samples, of shape size, if provided. When size is provided, the output shape is size + (p,) If not specified, the shape is determined by the broadcast shape of ``n`` and ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of the multinomial, ``p``, so that that output shape is ``(b0, b1, ..., bq, p)``. Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn from the distribution. .. versionchanged:: 1.22.0 Added support for broadcasting `pvals` against `n` Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2)) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6]) array([[2, 1, 4, 3, 0, 0], [3, 3, 3, 6, 1, 4]], dtype=int64) # random Generate categorical random variates from two categories where the first has 3 outcomes and the second has 2. >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]]) array([[0, 0, 1], [0, 1, 0]], dtype=int64) # random ``argmax(axis=-1)`` is then used to return the categories. >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]] >>> rvs = rng.multinomial(1, pvals, size=(4,2)) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The same output dimension can be produced using broadcasting. >>> rvs = rng.multinomial([[1]] * 4, pvals) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8, *, method='svd') Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (the squared standard deviation, or "width") of the one-dimensional normal distribution. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. cov is cast to double before the check. method : { 'svd', 'eigh', 'cholesky'}, optional The cov input is used to compute a factor matrix A such that ``A @ A.T = cov``. This argument is used to select the method used to compute the factor matrix A. The default method 'svd' is the slowest, while 'cholesky' is the fastest but less robust than the slowest method. The method `eigh` uses eigen decomposition to compute A and is faster than svd but slower than cholesky. .. versionadded:: 1.18.0 Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> x, y = rng.multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. This function internally uses linear algebra routines, and thus results may not be identical (even up to precision) across architectures, OSes, or even builds. For example, this is likely if ``cov`` has multiple equal singular values and ``method`` is ``'svd'`` (default). In this case, ``method='cholesky'`` may be more robust. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> rng = np.random.default_rng() >>> x = rng.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) We can use a different method other than the default to factorize cov: >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky') >>> y.shape (3, 3, 2) Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively, and the expected correlation coefficient is -3/sqrt(6*3.5) ≈ -0.65465. >>> cov = np.array([[6, -3], [-3, 3.5]]) >>> pts = rng.multivariate_normal([0, 0], cov, size=800) Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values: >>> pts.mean(axis=0) array([ 0.0326911 , -0.01280782]) # may vary >>> np.cov(pts.T) array([[ 5.96202397, -2.85602287], [-2.85602287, 3.47613949]]) # may vary >>> np.corrcoef(pts.T)[0, 1] -0.6273591314603949 # may vary We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation of the components of this sample. >>> import matplotlib.pyplot as plt >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5) >>> plt.axis('equal') >>> plt.grid() >>> plt.show() logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 <= ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range [0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> rng = np.random.default_rng() >>> s = rng.logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> bins = np.arange(-.5, max(s) + .5 ) >>> count, bins, _ = plt.hist(s, bins=bins, label='Sample count') # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> centres = np.arange(1, max(s) + 1) >>> plt.plot(centres, logseries(centres, a) * s.size, 'r', label='logseries PMF') >>> plt.legend() >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- multivariate_hypergeometric : Draw samples from the multivariate hypergeometric distribution. scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. References ---------- .. [1] Wikipedia, "Geometric distribution", https://en.wikipedia.org/wiki/Geometric_distribution Examples -------- Draw 10,000 values from the geometric distribution, with the probability of an individual success equal to ``p = 0.35``: >>> p, size = 0.35, 10000 >>> rng = np.random.default_rng() >>> sample = rng.geometric(p=p, size=size) What proportion of trials succeeded after a single run? >>> (sample == 1).sum()/size 0.34889999999999999 # may vary The geometric distribution with ``p=0.35`` looks as follows: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(sample, bins=30, density=True) >>> plt.plot(bins, (1-p)**(bins-1)*p) >>> plt.xlim([0, 25]) >>> plt.show() zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(k) = \frac{k^{-a}}{\zeta(a)}, for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 4.0 >>> n = 20000 >>> rng = np.random.default_rng() >>> s = rng.zipf(a, size=n) Display the histogram of the samples, along with the expected histogram based on the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import zeta # doctest: +SKIP `bincount` provides a fast histogram for small integers. >>> count = np.bincount(s) >>> k = np.arange(1, s.max() + 1) >>> plt.bar(k, count[1:], alpha=0.5, label='sample count') >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5, ... label='expected count') # doctest: +SKIP >>> plt.semilogy() >>> plt.grid(alpha=0.4) >>> plt.legend() >>> plt.title(f'Zipf sample, a={a}, size={n}') >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expected number of events occurring in a fixed-time interval, must be >= 0. A sequence must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> lam, size = 5, 10000 >>> s = rng.poisson(lam=lam, size=size) Verify the mean and variance, which should be approximately ``lam``: >>> s.mean(), s.var() (4.9917 5.1088311) # may vary Display the histogram and probability mass function: >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> x = np.arange(0, 21) >>> pmf = stats.poisson.pmf(x, mu=lam) >>> plt.hist(s, bins=x, density=True, width=0.5) >>> plt.stem(x, pmf, 'C1-') >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval (0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution. Must satisfy 0 < p <= 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. Because this method internally calls ``Generator.poisson`` with an intermediate random value, a ValueError is raised when the choice of :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled intermediate distribution exceeding the max acceptable value of the ``Generator.poisson`` method. This happens when :math:`p` is too low (a lot of failures happen for every success) and :math:`n` is too big ( a lot of successes are allowed). Therefore, the :math:`n` and :math:`p` values must satisfy the constraint: .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1}, Where the left side of the equation is the derived mean + 10 sigma of a sample from the gamma distribution internally used as the :math:`lam` parameter of a poisson sample, and the right side of the equation is the constraint for maximum value of :math:`lam` in ``Generator.poisson``. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> rng = np.random.default_rng() >>> s = rng.negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> rng = np.random.default_rng() >>> n, p, size = 10, .5, 10000 >>> s = rng.binomial(n, p, 10000) Assume a company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of ``p=0.1``. All nine wells fail. What is the probability of that happening? Over ``size = 20,000`` trials the probability of this happening is on average: >>> n, p, size = 9, 0.1, 20000 >>> np.sum(rng.binomial(n=n, p=p, size=size) == 0)/size 0.39015 # may vary The following can be used to visualize a sample with ``n=100``, ``p=0.4`` and the corresponding probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.stats import binom >>> n, p, size = 100, 0.4, 10000 >>> sample = rng.binomial(n, p, size=size) >>> count, bins, _ = plt.hist(sample, 30, density=True) >>> x = np.arange(n) >>> y = binom.pmf(x, n, p) >>> plt.plot(x, y, linewidth=2, color='r') triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> h = plt.hist(rng.triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> h = plt.hist(rng.wald(3, 2, 100000), bins=200, density=True) >>> plt.show() rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.prod(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, _ = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> rng = np.random.default_rng() >>> s = rng.logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, bins=50, label='Sampled data') # plot sampled data against the exact distribution >>> def logistic(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> logistic_values = logistic(bins, loc, scale) >>> bin_spacing = np.mean(np.diff(bins)) >>> plt.plot(bins, logistic_values * bin_spacing * s.size, label='Logistic PDF') >>> plt.legend() >>> plt.show() gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, _ = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> rng = np.random.default_rng() >>> s = rng.laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a <= 0. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> def weibull(x, n, a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, _ = plt.hist(rng.weibull(5., 1000)) >>> x = np.linspace(0, 2, 1000) >>> bin_spacing = np.mean(np.diff(bins)) >>> plt.plot(x, weibull(x, 1., 5.) * bin_spacing * s.size, label='Weibull PDF') >>> plt.legend() >>> plt.show() pareto(a, size=None) Draw samples from a Pareto II (AKA Lomax) distribution with specified shape. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the Pareto II distribution. See Also -------- scipy.stats.pareto : Pareto I distribution scipy.stats.lomax : Lomax (Pareto II) distribution scipy.stats.genpareto : Generalized Pareto distribution Notes ----- The probability density for the Pareto II distribution is .. math:: p(x) = \frac{a}{{x+1}^{a+1}} , x \ge 0 where :math:`a > 0` is the shape. The Pareto II distribution is a shifted and scaled version of the Pareto I distribution, which can be found in `scipy.stats.pareto`. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a = 3. >>> rng = np.random.default_rng() >>> s = rng.pareto(a, 10000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.linspace(0, 3, 50) >>> pdf = a / (x+1)**(a+1) >>> plt.hist(s, bins=x, density=True, label='histogram') >>> plt.plot(x, pdf, linewidth=2, color='r', label='pdf') >>> plt.xlim(x.min(), x.max()) >>> plt.legend() >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> rng = np.random.default_rng() >>> s = rng.vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either positive or negative, hence making our test 2-tailed. Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom. We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square root). >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> t -2.8207540608310198 We draw 1000000 samples from Student's t distribution with the adequate degrees of freedom. >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> s = rng.standard_t(10, size=1000000) >>> h = plt.hist(s, bins=100, density=True) Does our t statistic land in one of the two critical regions found at both tails of the distribution? >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s)) 0.018318 #random < 0.05, statistic is in critical region The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance threshold. Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being true is too low, and we reject the null hypothesis of no deviation. standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> s = rng.standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : float or array_like of floats Number of degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> rng = np.random.default_rng() >>> rng.chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random The distribution of a chi-square random variable with 20 degrees of freedom looks as follows: >>> import matplotlib.pyplot as plt >>> import scipy.stats as stats >>> s = rng.chisquare(20, 10000) >>> count, bins, _ = plt.hist(s, 30, density=True) >>> x = np.linspace(0, 60, 1000) >>> plt.plot(x, stats.chi2.pdf(x, df=20)) >>> plt.xlim([0, 60]) >>> plt.show() noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> rng = np.random.default_rng() >>> s = rng.f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. The corresponding probability density function for ``n = 20`` and ``m = 20`` is: >>> import matplotlib.pyplot as plt >>> from scipy import stats # doctest: +SKIP >>> dfnum, dfden, size = 20, 20, 10000 >>> s = rng.f(dfnum=dfnum, dfden=dfden, size=size) >>> bins, density, _ = plt.hist(s, 30, density=True) >>> x = np.linspace(0, 5, 1000) >>> plt.plot(x, stats.f.pdf(x, dfnum, dfden)) >>> plt.xlim([0, 5]) >>> plt.show() gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> rng = np.random.default_rng() >>> s = rng.gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, _ = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_gamma(shape, size=None, dtype=np.float64, out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> rng = np.random.default_rng() >>> s = rng.standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, _ = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> rng = np.random.default_rng() >>> s = rng.normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.0 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> rng = np.random.default_rng() >>> rng.normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random standard_normal(size=None, dtype=np.float64, out=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Notes ----- For random samples from the normal distribution with mean ``mu`` and standard deviation ``sigma``, use one of:: mu + sigma * rng.standard_normal(size=...) rng.normal(mu, sigma, size=...) Examples -------- >>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 # random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The high limit may be included in the returned array of floats due to floating-point rounding in the equation ``low + (high-low) * random_sample()``. high - low must be non-negative. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> s = rng.uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() choice(a, size=None, replace=True, p=None, axis=0, shuffle=True) Generates a random sample from a given array Parameters ---------- a : {array_like, int} If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated from np.arange(a). size : {int, tuple[int]}, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : bool, optional Whether the sample is with or without replacement. Default is True, meaning that a value of ``a`` can be selected multiple times. p : 1-D array_like, optional The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribution over all entries in ``a``. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : bool, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Notes ----- Setting user-specified probabilities through ``p`` uses a more general but less efficient sampler than the default. The general sampler produces a different sample than the optimized sampler even if each element of ``p`` is 1 / len(a). ``p`` must sum to 1 when cast to ``float64``. To ensure this, you may wish to normalize using ``p = p / np.sum(p, dtype=float)``. Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a uniform random sample from a 2-D array along the first axis (the default), without replacement: >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False) array([[3, 4, 5], # random [0, 1, 2]]) Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype='>> rng = np.random.default_rng() >>> rng.bytes(10) b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random integers(low, high=None, size=None, dtype=np.int64, endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is np.int64. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, https://arxiv.org/abs/1805.10941. standard_exponential(size=None, dtype=np.float64, method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> rng = np.random.default_rng() >>> n = rng.standard_exponential((3, 8000)) exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. Examples -------- Assume a company has 10000 customer support agents and the time between customer calls is exponentially distributed and that the average time between customer calls is 4 minutes. >>> scale, size = 4, 10000 >>> rng = np.random.default_rng() >>> time_between_calls = rng.exponential(scale=scale, size=size) What is the probability that a customer will call in the next 4 to 5 minutes? >>> x = ((time_between_calls < 5).sum())/size >>> y = ((time_between_calls < 4).sum())/size >>> x - y 0.08 # may vary The corresponding distribution can be visualized as follows: >>> import matplotlib.pyplot as plt >>> scale, size = 4, 10000 >>> rng = np.random.default_rng() >>> sample = rng.exponential(scale=scale, size=size) >>> count, bins, _ = plt.hist(sample, 30, density=True) >>> plt.plot(bins, scale**(-1)*np.exp(-scale**-1*bins), linewidth=2, color='r') >>> plt.show() References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalization, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. Examples -------- The beta distribution has mean a/(a+b). If ``a == b`` and both are > 1, the distribution is symmetric with mean 0.5. >>> rng = np.random.default_rng() >>> a, b, size = 2.0, 2.0, 10000 >>> sample = rng.beta(a=a, b=b, size=size) >>> np.mean(sample) 0.5047328775385895 # may vary Otherwise the distribution is skewed left or right according to whether ``a`` or ``b`` is greater. The distribution is mirror symmetric. See for example: >>> a, b, size = 2, 7, 10000 >>> sample_left = rng.beta(a=a, b=b, size=size) >>> sample_right = rng.beta(a=b, b=a, size=size) >>> m_left, m_right = np.mean(sample_left), np.mean(sample_right) >>> print(m_left, m_right) 0.2238596793678923 0.7774613834041182 # may vary >>> print(m_left - a/(a+b)) 0.001637457145670096 # may vary >>> print(m_right - b/(a+b)) -0.0003163943736596009 # may vary Display the histogram of the two samples: >>> import matplotlib.pyplot as plt >>> plt.hist([sample_left, sample_right], ... 50, density=True, histtype='bar') >>> plt.show() References ---------- .. [1] Wikipedia, "Beta distribution", https://en.wikipedia.org/wiki/Beta_distribution random(size=None, dtype=np.float64, out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` use `uniform` or multiply the output of `random` by ``(b - a)`` and add ``a``:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). See Also -------- uniform : Draw samples from the parameterized uniform distribution. Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) spawn(n_children) Create new independent child generators. See :ref:`seedsequence-spawn` for additional notes on spawning children. .. versionadded:: 1.25.0 Parameters ---------- n_children : int Returns ------- child_generators : list of Generators Raises ------ TypeError When the underlying SeedSequence does not implement spawning. See Also -------- random.BitGenerator.spawn, random.SeedSequence.spawn : Equivalent method on the bit generator and seed sequence. bit_generator : The bit generator instance used by the generator. Examples -------- Starting from a seeded default generator: >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}" >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501 >>> rng = np.random.default_rng(entropy) Create two new generators for example for parallel execution: >>> child_rng1, child_rng2 = rng.spawn(2) Drawn numbers from each are independent but derived from the initial seeding entropy: >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform() (0.19029263503854454, 0.9475673279178444, 0.4702687338396767) It is safe to spawn additional children from the original ``rng`` or the children: >>> more_child_rngs = rng.spawn(20) >>> nested_spawn = child_rng1.spawn(20) Unsupported dtype %r for standard_gammaUnsupported dtype %r for standard_normalGenerator.multivariate_hypergeometric (line 4210)unable to allocate shape and strides.sum(colors) must not exceed the maximum value of a 64 bit signed integer (%d)pvals must have at least 1 dimension and the last dimension of pvals must be greater than 0.numpy._core.umath failed to importnumpy._core.multiarray failed to importno default __reduce__ due to non-trivial __cinit__negative dimensions are not allowedn too large or p too small, see Generator.negative_binomial Notesmethod must be one of {'eigh', 'svd', 'cholesky'}method must be "count" or "marginals".memory allocation failed in permutedmean and cov must not be complexmean and cov must have same lengthhigh - low range exceeds valid boundsgot differing extents in dimension covariance is not symmetric positive-semidefinite.cov must be 2 dimensional and squarecolors must be a one-dimensional sequence of nonnegative integers not exceeding %d.check_valid must equal 'warn', 'raise', or 'ignore'both ngood and nbad must be less than %da must be a sequence or an integer, not a must be a positive integer unless no samples are takena cannot be empty unless no samples are takenWhen method is "marginals", sum(colors) must be less than 1000000000.Unsupported dtype %r for standard_exponentialUnsupported dtype %r for integersUnable to convert item to objectProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.Probabilities do not sum to 1. See Notes section of docstring for more information.Probabilities are not non-negativeOut of bounds on buffer access (axis Invalid mode, expected 'c' or 'fortran', got Invalid bit generator. The bit generator must be instantiated.Insufficient memory for multivariate_hypergeometric with method='count' and sum(colors)=%dIndirect dimensions not supportedIncompatible checksums (0x%x vs (0x82a3537, 0x6ae9995, 0xb068931) = (name))Generator.standard_normal (line 1116)Generator.standard_gamma (line 1293)Generator.standard_exponential (line 525)Generator.standard_cauchy (line 1805)Generator.noncentral_f (line 1566)Generator.noncentral_chisquare (line 1725)Generator.negative_binomial (line 3131)Generator.multivariate_normal (line 3721)Generator.multivariate_hypergeometricGenerator.hypergeometric (line 3494)Fewer non-zero entries in p than sizeEmpty shape tuple for cython.arrayConstruct a new Generator with the default BitGenerator (PCG64). Parameters ---------- seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the `BitGenerator`. If None, then fresh, unpredictable entropy will be pulled from the OS. If an ``int`` or ``array_like[ints]`` is passed, then all values must be non-negative and will be passed to `SeedSequence` to derive the initial `BitGenerator` state. One may also pass in a `SeedSequence` instance. Additionally, when passed a `BitGenerator`, it will be wrapped by `Generator`. If passed a `Generator`, it will be returned unaltered. Returns ------- Generator The initialized generator object. Notes ----- If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator` is instantiated. This function does not manage a default global instance. See :ref:`seeding_and_entropy` for more information about seeding. Examples -------- `default_rng` is the recommended constructor for the random number class `Generator`. Here are several ways we can construct a random number generator using `default_rng` and the `Generator` class. Here we use `default_rng` to generate a random float: >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> print(rng) Generator(PCG64) >>> rfloat = rng.random() >>> rfloat 0.22733602246716966 >>> type(rfloat) Here we use `default_rng` to generate 3 random integers between 0 (inclusive) and 10 (exclusive): >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> rints = rng.integers(low=0, high=10, size=3) >>> rints array([6, 2, 7]) >>> type(rints[0]) Here we specify a seed so that we have reproducible results: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> print(rng) Generator(PCG64) >>> arr1 = rng.random((3, 3)) >>> arr1 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) If we exit and restart our Python interpreter, we'll see that we generate the same random numbers again: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> arr2 = rng.random((3, 3)) >>> arr2 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) Cannot transpose memoryview with indirect dimensionsCannot take a larger sample than population when replace is FalseCannot create writable memory view from read-only memoryviewCannot assign to read-only memoryviewCan only create a buffer that is contiguous in memory.Buffer view does not expose stridesAll dimensions preceding dimension %d must be indexed and not sliced zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(k) = \frac{k^{-a}}{\zeta(a)}, for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 4.0 >>> n = 20000 >>> rng = np.random.default_rng() >>> s = rng.zipf(a, size=n) Display the histogram of the samples, along with the expected histogram based on the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import zeta # doctest: +SKIP `bincount` provides a fast histogram for small integers. >>> count = np.bincount(s) >>> k = np.arange(1, s.max() + 1) >>> plt.bar(k, count[1:], alpha=0.5, label='sample count') >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5, ... label='expected count') # doctest: +SKIP >>> plt.semilogy() >>> plt.grid(alpha=0.4) >>> plt.legend() >>> plt.title(f'Zipf sample, a={a}, size={n}') >>> plt.show() weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> def weibull(x, n, a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, _ = plt.hist(rng.weibull(5., 1000)) >>> x = np.linspace(0, 2, 1000) >>> bin_spacing = np.mean(np.diff(bins)) >>> plt.plot(x, weibull(x, 1., 5.) * bin_spacing * s.size, label='Weibull PDF') >>> plt.legend() >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> rng = np.random.default_rng() >>> s = rng.vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The high limit may be included in the returned array of floats due to floating-point rounding in the equation ``low + (high-low) * random_sample()``. high - low must be non-negative. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> s = rng.uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> h = plt.hist(rng.triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either positive or negative, hence making our test 2-tailed. Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom. We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square root). >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> t -2.8207540608310198 We draw 1000000 samples from Student's t distribution with the adequate degrees of freedom. >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> s = rng.standard_t(10, size=1000000) >>> h = plt.hist(s, bins=100, density=True) Does our t statistic land in one of the two critical regions found at both tails of the distribution? >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s)) 0.018318 #random < 0.05, statistic is in critical region The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance threshold. Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being true is too low, and we reject the null hypothesis of no deviation. standard_normal(size=None, dtype=np.float64, out=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Notes ----- For random samples from the normal distribution with mean ``mu`` and standard deviation ``sigma``, use one of:: mu + sigma * rng.standard_normal(size=...) rng.normal(mu, sigma, size=...) Examples -------- >>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 # random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random spawn(n_children) Create new independent child generators. See :ref:`seedsequence-spawn` for additional notes on spawning children. .. versionadded:: 1.25.0 Parameters ---------- n_children : int Returns ------- child_generators : list of Generators Raises ------ TypeError When the underlying SeedSequence does not implement spawning. See Also -------- random.BitGenerator.spawn, random.SeedSequence.spawn : Equivalent method on the bit generator and seed sequence. bit_generator : The bit generator instance used by the generator. Examples -------- Starting from a seeded default generator: >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}" >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501 >>> rng = np.random.default_rng(entropy) Create two new generators for example for parallel execution: >>> child_rng1, child_rng2 = rng.spawn(2) Drawn numbers from each are independent but derived from the initial seeding entropy: >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform() (0.19029263503854454, 0.9475673279178444, 0.4702687338396767) It is safe to spawn additional children from the original ``rng`` or the children: >>> more_child_rngs = rng.spawn(20) >>> nested_spawn = child_rng1.spawn(20) shuffle(x, axis=0) Modify an array or sequence in-place by shuffling its contents. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. axis : int, optional The axis which `x` is shuffled along. Default is 0. It is only supported on `ndarray` objects. Returns ------- None See Also -------- permuted permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> arr array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> rng.shuffle(arr) >>> arr array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) >>> arr = np.arange(9).reshape((3, 3)) >>> arr array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> rng.shuffle(arr, axis=1) >>> arr array([[2, 0, 1], # random [5, 3, 4], [8, 6, 7]]) rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random random(size=None, dtype=np.float64, out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` use `uniform` or multiply the output of `random` by ``(b - a)`` and add ``a``:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). See Also -------- uniform : Draw samples from the parameterized uniform distribution. Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a <= 0. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') permuted(x, axis=None, out=None) Randomly permute `x` along axis `axis`. Unlike `shuffle`, each slice along the given axis is shuffled independently of the others. Parameters ---------- x : array_like, at least one-dimensional Array to be shuffled. axis : int, optional Slices of `x` in this axis are shuffled. Each slice is shuffled independently of the others. If `axis` is None, the flattened array is shuffled. out : ndarray, optional If given, this is the destination of the shuffled array. If `out` is None, a shuffled copy of the array is returned. Returns ------- ndarray If `out` is None, a shuffled copy of `x` is returned. Otherwise, the shuffled array is stored in `out`, and `out` is returned See Also -------- shuffle permutation Notes ----- An important distinction between methods ``shuffle`` and ``permuted`` is how they both treat the ``axis`` parameter which can be found at :ref:`generator-handling-axis-parameter`. Examples -------- Create a `numpy.random.Generator` instance: >>> rng = np.random.default_rng() Create a test array: >>> x = np.arange(24).reshape(3, 8) >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) Shuffle the rows of `x`: >>> y = rng.permuted(x, axis=1) >>> y array([[ 4, 3, 6, 7, 1, 2, 5, 0], # random [15, 10, 14, 9, 12, 11, 8, 13], [17, 16, 20, 21, 18, 22, 23, 19]]) `x` has not been modified: >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) To shuffle the rows of `x` in-place, pass `x` as the `out` parameter: >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 3, 0, 4, 7, 1, 6, 2, 5], # random [ 8, 14, 13, 9, 12, 11, 15, 10], [17, 18, 16, 22, 19, 23, 20, 21]]) Note that when the ``out`` parameter is given, the return value is ``out``: >>> y is x True permutation(x, axis=0) Randomly permute a sequence, or return a permuted range. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. axis : int, optional The axis which `x` is shuffled along. Default is 0. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0 >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr, axis=1) array([[0, 2, 1], # random [3, 5, 4], [6, 8, 7]]) pareto(a, size=None) Draw samples from a Pareto II (AKA Lomax) distribution with specified shape. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the Pareto II distribution. See Also -------- scipy.stats.pareto : Pareto I distribution scipy.stats.lomax : Lomax (Pareto II) distribution scipy.stats.genpareto : Generalized Pareto distribution Notes ----- The probability density for the Pareto II distribution is .. math:: p(x) = \frac{a}{{x+1}^{a+1}} , x \ge 0 where :math:`a > 0` is the shape. The Pareto II distribution is a shifted and scaled version of the Pareto I distribution, which can be found in `scipy.stats.pareto`. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a = 3. >>> rng = np.random.default_rng() >>> s = rng.pareto(a, 10000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.linspace(0, 3, 50) >>> pdf = a / (x+1)**(a+1) >>> plt.hist(s, bins=x, density=True, label='histogram') >>> plt.plot(x, pdf, linewidth=2, color='r', label='pdf') >>> plt.xlim(x.min(), x.max()) >>> plt.legend() >>> plt.show() out must have the same shape as x normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> rng = np.random.default_rng() >>> s = rng.normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.0 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: >>> rng = np.random.default_rng() >>> rng.normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval (0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution. Must satisfy 0 < p <= 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. Because this method internally calls ``Generator.poisson`` with an intermediate random value, a ValueError is raised when the choice of :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled intermediate distribution exceeding the max acceptable value of the ``Generator.poisson`` method. This happens when :math:`p` is too low (a lot of failures happen for every success) and :math:`n` is too big ( a lot of successes are allowed). Therefore, the :math:`n` and :math:`p` values must satisfy the constraint: .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1}, Where the left side of the equation is the derived mean + 10 sigma of a sample from the gamma distribution internally used as the :math:`lam` parameter of a poisson sample, and the right side of the equation is the constraint for maximum value of :math:`lam` in ``Generator.poisson``. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> rng = np.random.default_rng() >>> s = rng.negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> x, y = rng.multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. This function internally uses linear algebra routines, and thus results may not be identical (even up to precision) across architectures, OSes, or even builds. For example, this is likely if ``cov`` has multiple equal singular values and ``method`` is ``'svd'`` (default). In this case, ``method='cholesky'`` may be more robust. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> rng = np.random.default_rng() >>> x = rng.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) We can use a different method other than the default to factorize cov: >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky') >>> y.shape (3, 3, 2) Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively, and the expected correlation coefficient is -3/sqrt(6*3.5) ≈ -0.65465. >>> cov = np.array([[6, -3], [-3, 3.5]]) >>> pts = rng.multivariate_normal([0, 0], cov, size=800) Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values: >>> pts.mean(axis=0) array([ 0.0326911 , -0.01280782]) # may vary >>> np.cov(pts.T) array([[ 5.96202397, -2.85602287], [-2.85602287, 3.47613949]]) # may vary >>> np.corrcoef(pts.T)[0, 1] -0.6273591314603949 # may vary We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation of the components of this sample. >>> import matplotlib.pyplot as plt >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5) >>> plt.axis('equal') >>> plt.grid() >>> plt.show() multivariate_hypergeometric(colors, nsample, size=None, method='marginals') Generate variates from a multivariate hypergeometric distribution. The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution. Choose ``nsample`` items at random without replacement from a collection with ``N`` distinct types. ``N`` is the length of ``colors``, and the values in ``colors`` are the number of occurrences of that type in the collection. The total number of items in the collection is ``sum(colors)``. Each random variate generated by this function is a vector of length ``N`` holding the counts of the different types that occurred in the ``nsample`` items. The name ``colors`` comes from a common description of the distribution: it is the probability distribution of the number of marbles of each color selected without replacement from an urn containing marbles of different colors; ``colors[i]`` is the number of marbles in the urn with color ``i``. Parameters ---------- colors : sequence of integers The number of each type of item in the collection from which a sample is drawn. The values in ``colors`` must be nonnegative. To avoid loss of precision in the algorithm, ``sum(colors)`` must be less than ``10**9`` when `method` is "marginals". nsample : int The number of items selected. ``nsample`` must not be greater than ``sum(colors)``. size : int or tuple of ints, optional The number of variates to generate, either an integer or a tuple holding the shape of the array of variates. If the given size is, e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one variate is a vector of length ``len(colors)``, and the return value has shape ``(k, m, len(colors))``. If `size` is an integer, the output has shape ``(size, len(colors))``. Default is None, in which case a single variate is returned as an array with shape ``(len(colors),)``. method : string, optional Specify the algorithm that is used to generate the variates. Must be 'count' or 'marginals' (the default). See the Notes for a description of the methods. Returns ------- variates : ndarray Array of variates drawn from the multivariate hypergeometric distribution. See Also -------- hypergeometric : Draw samples from the (univariate) hypergeometric distribution. Notes ----- The two methods do not return the same sequence of variates. The "count" algorithm is roughly equivalent to the following numpy code:: choices = np.repeat(np.arange(len(colors)), colors) selection = np.random.choice(choices, nsample, replace=False) variate = np.bincount(selection, minlength=len(colors)) The "count" algorithm uses a temporary array of integers with length ``sum(colors)``. The "marginals" algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It is roughly equivalent to:: variate = np.zeros(len(colors), dtype=np.int64) # `remaining` is the cumulative sum of `colors` from the last # element to the first; e.g. if `colors` is [3, 1, 5], then # `remaining` is [9, 6, 5]. remaining = np.cumsum(colors[::-1])[::-1] for i in range(len(colors)-1): if nsample < 1: break variate[i] = hypergeometric(colors[i], remaining[i+1], nsample) nsample -= variate[i] variate[-1] = nsample The default method is "marginals". For some cases (e.g. when `colors` contains relatively small integers), the "count" method can be significantly faster than the "marginals" method. If performance of the algorithm is important, test the two methods with typical inputs to decide which works best. .. versionadded:: 1.18.0 Examples -------- >>> colors = [16, 8, 4] >>> seed = 4861946401452 >>> gen = np.random.Generator(np.random.PCG64(seed)) >>> gen.multivariate_hypergeometric(colors, 6) array([5, 0, 1]) >>> gen.multivariate_hypergeometric(colors, 6, size=3) array([[5, 0, 1], [2, 2, 2], [3, 3, 0]]) >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2)) array([[[3, 2, 1], [3, 2, 1]], [[4, 1, 1], [3, 2, 1]]]) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : array-like of floats Probabilities of each of the ``p`` different outcomes with shape ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1 dimension where pvals.shape[-1] > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn each with ``p`` elements. Default is None where the output size is determined by the broadcast shape of ``n`` and all by the final dimension of ``pvals``, which is denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it must be compatible with the broadcast shape ``b``. Specifically, size must have ``q`` or more elements and size[-(q-j):] must equal ``bj``. Returns ------- out : ndarray The drawn samples, of shape size, if provided. When size is provided, the output shape is size + (p,) If not specified, the shape is determined by the broadcast shape of ``n`` and ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of the multinomial, ``p``, so that that output shape is ``(b0, b1, ..., bq, p)``. Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn from the distribution. .. versionchanged:: 1.22.0 Added support for broadcasting `pvals` against `n` Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2)) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6]) array([[2, 1, 4, 3, 0, 0], [3, 3, 3, 6, 1, 4]], dtype=int64) # random Generate categorical random variates from two categories where the first has 3 outcomes and the second has 2. >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]]) array([[0, 0, 1], [0, 1, 0]], dtype=int64) # random ``argmax(axis=-1)`` is then used to return the categories. >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]] >>> rvs = rng.multinomial(1, pvals, size=(4,2)) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The same output dimension can be produced using broadcasting. >>> rvs = rng.multinomial([[1]] * 4, pvals) >>> rvs.argmax(axis=-1) array([[0, 1], [2, 0], [2, 1], [2, 0]], dtype=int64) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 <= ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range [0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> rng = np.random.default_rng() >>> s = rng.logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> bins = np.arange(-.5, max(s) + .5 ) >>> count, bins, _ = plt.hist(s, bins=bins, label='Sample count') # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> centres = np.arange(1, max(s) + 1) >>> plt.plot(centres, logseries(centres, a) * s.size, 'r', label='logseries PMF') >>> plt.legend() >>> plt.show() lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.prod(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, _ = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> rng = np.random.default_rng() >>> s = rng.logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, bins=50, label='Sampled data') # plot sampled data against the exact distribution >>> def logistic(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> logistic_values = logistic(bins, loc, scale) >>> bin_spacing = np.mean(np.diff(bins)) >>> plt.plot(bins, logistic_values * bin_spacing * s.size, label='Logistic PDF') >>> plt.legend() >>> plt.show() is not compatible with broadcast dimensions of inputs integers(low, high=None, size=None, dtype=np.int64, endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is np.int64. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, https://arxiv.org/abs/1805.10941. hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- multivariate_hypergeometric : Draw samples from the multivariate hypergeometric distribution. scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, _ = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. References ---------- .. [1] Wikipedia, "Geometric distribution", https://en.wikipedia.org/wiki/Geometric_distribution Examples -------- Draw 10,000 values from the geometric distribution, with the probability of an individual success equal to ``p = 0.35``: >>> p, size = 0.35, 10000 >>> rng = np.random.default_rng() >>> sample = rng.geometric(p=p, size=size) What proportion of trials succeeded after a single run? >>> (sample == 1).sum()/size 0.34889999999999999 # may vary The geometric distribution with ``p=0.35`` looks as follows: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(sample, bins=30, density=True) >>> plt.plot(bins, (1-p)**(bins-1)*p) >>> plt.xlim([0, 25]) >>> plt.show() gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> rng = np.random.default_rng() >>> s = rng.gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, _ = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> rng = np.random.default_rng() >>> s = rng.f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. The corresponding probability density function for ``n = 20`` and ``m = 20`` is: >>> import matplotlib.pyplot as plt >>> from scipy import stats # doctest: +SKIP >>> dfnum, dfden, size = 20, 20, 10000 >>> s = rng.f(dfnum=dfnum, dfden=dfden, size=size) >>> bins, density, _ = plt.hist(s, 30, density=True) >>> x = np.linspace(0, 5, 1000) >>> plt.plot(x, stats.f.pdf(x, dfnum, dfden)) >>> plt.xlim([0, 5]) >>> plt.show() exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. Examples -------- Assume a company has 10000 customer support agents and the time between customer calls is exponentially distributed and that the average time between customer calls is 4 minutes. >>> scale, size = 4, 10000 >>> rng = np.random.default_rng() >>> time_between_calls = rng.exponential(scale=scale, size=size) What is the probability that a customer will call in the next 4 to 5 minutes? >>> x = ((time_between_calls < 5).sum())/size >>> y = ((time_between_calls < 4).sum())/size >>> x - y 0.08 # may vary The corresponding distribution can be visualized as follows: >>> import matplotlib.pyplot as plt >>> scale, size = 4, 10000 >>> rng = np.random.default_rng() >>> sample = rng.exponential(scale=scale, size=size) >>> count, bins, _ = plt.hist(sample, 30, density=True) >>> plt.plot(bins, scale**(-1)*np.exp(-scale**-1*bins), linewidth=2, color='r') >>> plt.show() References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution choice(a, size=None, replace=True, p=None, axis=0, shuffle=True) Generates a random sample from a given array Parameters ---------- a : {array_like, int} If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated from np.arange(a). size : {int, tuple[int]}, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : bool, optional Whether the sample is with or without replacement. Default is True, meaning that a value of ``a`` can be selected multiple times. p : 1-D array_like, optional The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribution over all entries in ``a``. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : bool, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Notes ----- Setting user-specified probabilities through ``p`` uses a more general but less efficient sampler than the default. The general sampler produces a different sample than the optimized sampler even if each element of ``p`` is 1 / len(a). ``p`` must sum to 1 when cast to ``float64``. To ensure this, you may wish to normalize using ``p = p / np.sum(p, dtype=float)``. Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a uniform random sample from a 2-D array along the first axis (the default), without replacement: >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False) array([[3, 4, 5], # random [0, 1, 2]]) Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype=' 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> rng = np.random.default_rng() >>> rng.chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random The distribution of a chi-square random variable with 20 degrees of freedom looks as follows: >>> import matplotlib.pyplot as plt >>> import scipy.stats as stats >>> s = rng.chisquare(20, 10000) >>> count, bins, _ = plt.hist(s, 30, density=True) >>> x = np.linspace(0, 60, 1000) >>> plt.plot(x, stats.chi2.pdf(x, df=20)) >>> plt.xlim([0, 60]) >>> plt.show() bytes(length) Return random bytes. Parameters ---------- length : int Number of random bytes. Returns ------- out : bytes String of length `length`. Notes ----- This function generates random bytes from a discrete uniform distribution. The generated bytes are independent from the CPU's native endianness. Examples -------- >>> rng = np.random.default_rng() >>> rng.bytes(10) b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random binomial(n, p, size=None) Draw samples from a binomial distribution. Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in use) Parameters ---------- n : int or array_like of ints Parameter of the distribution, >= 0. Floats are also accepted, but they will be truncated to integers. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized binomial distribution, where each sample is equal to the number of successes over the n trials. See Also -------- scipy.stats.binom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the binomial distribution is .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N}, where :math:`n` is the number of trials, :math:`p` is the probability of success, and :math:`N` is the number of successes. When estimating the standard error of a proportion in a population by using a random sample, the normal distribution works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples, in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be used in this case. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics with R", Springer-Verlag, 2002. .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BinomialDistribution.html .. [5] Wikipedia, "Binomial distribution", https://en.wikipedia.org/wiki/Binomial_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> n, p, size = 10, .5, 10000 >>> s = rng.binomial(n, p, 10000) Assume a company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of ``p=0.1``. All nine wells fail. What is the probability of that happening? Over ``size = 20,000`` trials the probability of this happening is on average: >>> n, p, size = 9, 0.1, 20000 >>> np.sum(rng.binomial(n=n, p=p, size=size) == 0)/size 0.39015 # may vary The following can be used to visualize a sample with ``n=100``, ``p=0.4`` and the corresponding probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.stats import binom >>> n, p, size = 100, 0.4, 10000 >>> sample = rng.binomial(n, p, size=size) >>> count, bins, _ = plt.hist(sample, 30, density=True) >>> x = np.arange(n) >>> y = binom.pmf(x, n, p) >>> plt.plot(x, y, linewidth=2, color='r') beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalization, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. Examples -------- The beta distribution has mean a/(a+b). If ``a == b`` and both are > 1, the distribution is symmetric with mean 0.5. >>> rng = np.random.default_rng() >>> a, b, size = 2.0, 2.0, 10000 >>> sample = rng.beta(a=a, b=b, size=size) >>> np.mean(sample) 0.5047328775385895 # may vary Otherwise the distribution is skewed left or right according to whether ``a`` or ``b`` is greater. The distribution is mirror symmetric. See for example: >>> a, b, size = 2, 7, 10000 >>> sample_left = rng.beta(a=a, b=b, size=size) >>> sample_right = rng.beta(a=b, b=a, size=size) >>> m_left, m_right = np.mean(sample_left), np.mean(sample_right) >>> print(m_left, m_right) 0.2238596793678923 0.7774613834041182 # may vary >>> print(m_left - a/(a+b)) 0.001637457145670096 # may vary >>> print(m_right - b/(a+b)) -0.0003163943736596009 # may vary Display the histogram of the two samples: >>> import matplotlib.pyplot as plt >>> plt.hist([sample_left, sample_right], ... 50, density=True, histtype='bar') >>> plt.show() References ---------- .. [1] Wikipedia, "Beta distribution", https://en.wikipedia.org/wiki/Beta_distribution .astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.When method is 'count', sum(colors) must not exceed %dGenerator.permutation (line 4927)Generator.multinomial (line 3963)Axis argument is only supported on ndarray objects wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> h = plt.hist(rng.wald(3, 2, 100000), bins=200, density=True) >>> plt.show() standard_gamma(shape, size=None, dtype=np.float64, out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> rng = np.random.default_rng() >>> s = rng.standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, _ = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_exponential(size=None, dtype=np.float64, method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> rng = np.random.default_rng() >>> n = rng.standard_exponential((3, 8000)) standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> s = rng.standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expected number of events occurring in a fixed-time interval, must be >= 0. A sequence must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> lam, size = 5, 10000 >>> s = rng.poisson(lam=lam, size=size) Verify the mean and variance, which should be approximately ``lam``: >>> s.mean(), s.var() (4.9917 5.1088311) # may vary Display the histogram and probability mass function: >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> x = np.arange(0, 21) >>> pmf = stats.poisson.pmf(x, mu=lam) >>> plt.hist(s, bins=x, density=True, width=0.5) >>> plt.stem(x, pmf, 'C1-') >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) ' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling. laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> rng = np.random.default_rng() >>> s = rng.laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------ ValueError If any value in ``alpha`` is less than zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, https://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> rng = np.random.default_rng() >>> s = rng.dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") Unsupported dtype %r for randomGenerator.triangular (line 2874)Generator.standard_t (line 1871)Generator.standard_exponentialGenerator.noncentral_chisquareGenerator.exponential (line 445)unable to allocate array data.Generator.multivariate_normalGenerator.logseries (line 3637)Generator.lognormal (line 2624)Generator.geometric (line 3427)Generator.dirichlet (line 4427)Generator.chisquare (line 1644)Generator.vonmises (line 1978)Generator.rayleigh (line 2736)Generator.permuted (line 4633)Generator.logistic (line 2541)Generator.binomial (line 2975)numpy/random/_generator.pyxnsample must be nonnegative.multivariate_hypergeometricitemsize <= 0 for cython.arraya and p must have same sizeStep may not be zero (axis %d)Generator.weibull (line 2137)Generator.uniform (line 1009)Generator.shuffle (line 4794)Generator.poisson (line 3256)Generator.negative_binomialGenerator.laplace (line 2336)Generator.integers (line 579)nsample must be an integermean must be 1 dimensionalRange exceeds valid boundsIndex out of bounds (axis %d)Generator.pareto (line 2062)Generator.normal (line 1188)Generator.gumbel (line 2422)out must be a numpy arraynsample must not exceed %dProbabilities contain NaNGenerator.standard_normalGenerator.standard_cauchyGenerator.random (line 301)Generator.power (line 2235)Generator.gamma (line 1385)Generator.choice (line 741)_Generator__generator_ctorDimension %d is not directGenerator.zipf (line 3338)Generator.wald (line 2805)Generator.standard_gammaGenerator.spawn (line 243)Generator.hypergeometricGenerator.bytes (line 706)p must be 1-dimensionalnumpy.random._generatorGenerator.beta (line 364)Generator.noncentral_fCannot index with type 'numpy.lib.array_utilsdefault_rng (line 4999)Invalid shape in axis Generator.permutationGenerator.multinomialGenerator.f (line 1464)Generator.exponentialstandard_exponentialnormalize_axis_indexnoncentral_chisquareGenerator.triangularGenerator.standard_tGenerator.__setstate__Generator.__getstate__you are shuffling a 'multivariate_normalNotImplementedErrorGenerator.logseriesGenerator.lognormalGenerator.geometricGenerator.dirichletGenerator.chisquarensample > sum(colors)ngood + nbad < nsamplecline_in_tracebackasyncio.coroutinesarray is read-onlyGenerator.vonmisesGenerator.rayleighGenerator.permutedGenerator.logisticGenerator.integersGenerator.binomialGenerator.__reduce____pyx_unpickle_Enumnegative_binomialascontiguousarrayGenerator.weibullGenerator.uniformGenerator.shuffleGenerator.poissonGenerator.laplacemay_share_memoryGenerator.randomGenerator.paretoGenerator.normalGenerator.gumbelGenerator.choiceuniform_samplesstandard_normalstandard_cauchy__setstate_cython____pyx_PickleError_poisson_lam_maxdtype_is_objectcollections.abcalpha_csum_dataallocate_bufferView.MemoryViewGenerator.spawnGenerator.powerGenerator.gammaGenerator.bytesunique_indicesstandard_gammainvalid_colorshypergeometric__generator_ctoralpha_csum_arrRuntimeWarningGenerator.zipfGenerator.waldGenerator.betaAssertionError__reduce_cython__count_nonzero__class_getitem__bit_generatorOverflowErrorHYPERGEOM_MAXversion_infovariates_ptrsearchsortedreturn_indexrandoms_data__pyx_checksumnumpy.linalgnum_variatesnoncentral_f_is_coroutine_initializingpermutationmultinomialmax_lam_arrfinal_shapeexponentialdefault_rngcollectionscheck_validUserWarningPickleErrorOutput size MemoryErrorImportErrorGenerator.ftriangularto_shufflestandard_tstacklevelslice_repr__pyx_vtable____pyx_resultpop_size_inum_colorsn_childrenmode > rightlogical_orleft == rightissubdtypeflat_foundempty_likecolors_ptralpha_dataa_originalValueErrorIndexErrorwriteablesum(pvals__reduce_ex____pyx_statemax_indexmarginalslogserieslognormalleft > modeisenabledis_scalarhasobjectgeometricenumeratedirichletchisquarealpha_arrTypeErrorGeneratorwarningsvonmisesvariatesval_datatemp_arrswapaxessubtract__setstate__set_sizereversedregister__reduce__rayleigh__pyx_typepop_size_picklepermutedoperatoronsamplen_uint32logisticlnsampleitemsizeisscalarisnativeisfiniteintegersidx_datahigh - lowhash_set__getstate__endpoint_dmax_lamcholeskybinomialaxstrideallcloseSequenceEllipsisweibullval_arruniformtotsizetobytesstridesshuffle__rmatmul__reshapereplacerandomspoissonoffsetsnsamplememviewlaplace__imatmul__greaterfortranfloat64float32_dtypedisablecastingcapsulebuf_ptrbit_gen at 0x{:X}asarrayalpha < 0updateunpackuniqueuint64uint32uint16structstridestatusslicessize_iresultreducerandompickleparetoorightongoodoffsetnormal__name__n_uniqmultinmethod__matmul___maskedlngoodlengthinvacc__import__ignore_highgumbelfrightformat_factorencodeenabledoublecutoffcumsumcopytocolorschoiceastypearangezerosx_ptruint8totalstatestartspawnsigmashapescalerightravelrangeraisepvalspower_pcg64p_sump_arrorderonbadomodeoleftnumpynsampngoodnewn_arrmnarr_lowlnbadkappaisnanint64int32int16indexgammafoundfmodefleftflagsfinfoerrorequal__enter__emptydtypediricdfnumdfdencount__class__bytesaxlenarrayalphaahighPCG64ASCIIzipfwarnwald__test__temptakestopstepsqrt__spec__sortsizesideselfseedsafertolprodparrpacknoncndimnbadnamemodemnixmeanmask__main__locklessleftitemintpint8highfuncfull__exit__eigh__dict__csumcopyboolbetabaseaxisatolalow?Nonezigvaltolsyssvdsum__str__rngretrespsdpixoutobj__new__msgmaxlowloclamidx (got excepsdotcovcntcdfbufarrany and alladdaccabc_([...,:-1]) > 1.0vhqh??$@?/*p?3f?(_?xY?յS?N?J?F?DB?Qt??u+ ?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x >b>x>>!>^}>;z>Хw>@t>wr>byl>i>g>Sd>3a>^>]\>&Y>z)W>T>P R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>= >T>T>4>>y >ϣ > >>L>>l>=+==0 =C==8==hp==0== =n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W= C=4=M,=4*=D.=y8=H=~=x=3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k 33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44 4` 4M 47 44?4nB44L4 i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84 C4P4_4q474{4w4>ԕ44s4<4d444$4 (4a44lߢ4$4l44x 4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó 5 5]5^555q5v 5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i ~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`  i   6  H  A!B+m 5XttW3 `wK\ L   s   G {V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~ }}} }}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~ n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u? !?z}k? ~?@?`x?*?8? Qi?oTC?_(4?ָ?@je?!u v?7Zi?{ ?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹? Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+ j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~ /? {^?Z? ?ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8? [B/?I䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T ξ?x.BTv?Imb.??6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#? V#?_?S?Q| z? Y&?$?htQz? 3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%? RD?lj?W'n?-BU؊?h?t4? n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%> T+Y? O?K 2=?]d<A]X`<+M[Ij<[5q&<.8eG< h#ឪV <;LC%K<ꆭh NVeΙVn6nvK zicp%E tQ)2U1WQ9Lin?23F:L"3\LQ V f[_rWDdx h+*k2=Ko:qr Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cx AFẙi&zqVYםΡag6 X83:뇡koɣj_ۤ| Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!X ɦ֬ ᆴX7(. Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B < EOvpc/F<Ң"Ae އ0~ Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+ E>ҙ02yΩ4A (Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF 3n bH޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄ /0 wپ}2}K D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ @樫(afoeW-|&aY +M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<> ~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J> >:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[> Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*> > >Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\= s==d= =yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4 t4u4v4Cw4x4 z42{40S|4u}4~44v4@ 4L4>4ق4v444lV44R4F44p4 I44"4_44Ќ4l4L4`4ԏ4坐4y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/ {ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6 < :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR T=UdVWXYZ[\]^~__`;abbcod.eefLggh~~7~~/~7~~ ~ ~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1? OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g? U7?e&$ ?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?PF9 ?ߓ^??ۮY?3???i?Z8o? O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O? Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8 ? Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~& ~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l ?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n? R=?Kr?*}T#?,"k>?R) ?K{o?vaӽ?命8? t;I_? h?3xk?3Ӻ?b3?vZ9S?LJisk?M$a.?ftW?+ ?"@|?&#?p>_?1fҲ? DE?} ?/?%,?0?5nl+,&?QG?b. ?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u? ̓0?"NR? y? ڥ?d֔?^8 ?0`4I?IrO*?O'?x A?B?/)?7h`|?] ٨v?p?gC_e?T?yx;I< <[,L< Ŀk<4xV<=A[<'?}y<NG<~;[xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8) YfHqն&|s f2,2Ztզޗ .n ZR'ӯB)[l@u Pҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs) 4<=>)G'QA@Y.(5bX jz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ: Aޓ=?~)@ lѿ3 ; @UUUUUU?"@m{??@@5gG8?SˆB?AAz?<ٰj_?$+K?88C?J?llf?UUUUUU?dg?̶e*= ףp=@n?[ m?h|?5?333333 @r?$~?B>٬ @r鷯?Q?Q?9v?(\@ffffff@0C.@4@x&?@?UUUUUU?a@X@`@|@@MA>@@-DT! @h㈵>.A-DT! -DT!@3?r?q?0@9B.? * ?,|l @yD@:5/?@@R2B@96SC@wz*E@r4dF@OOfq]@Ob^@+NT_@ݭC#`@~{`@kbba@YSȐa@n b@1Ib@5ca c@c@ͦ3 d@\>d@nz e@s9Je@FGGʪ f@yyuf@IJC g@Y&g@oFh@·h@aQL i@ai@ F~x*j@&Pj@7k@!+k@VFl@ l@tVm@pZNm@k9ihn@HQOUn@a,~|o@b4nʼnp@+e Ip@cp@)Vp@*q@6Gaq@q@>m#FJq@FK.5r@b)C|r@Wrr@V] s@rRs@GIqs@ >6qs@jB*t@ A=rt@fIw|t@d'-u@X+{ Mu@# u@ZGDu@;#(v@b%rv@iv{Իv@w@Ow@\&әw@}6-#w@h͙.x@k?7yx@–'x@_*y@Yy@1*y@^TTy@,{L`>p??p@ AA ,B|B 4CxC0C@ D`k|DE#EHpF`jDG{G DHH IIhJ@hK KW!@X;XDYK(ZKXZQZ`RZ4[[@\p(\@C`]`Y] 0^Џ^H_0_``p`P` `@`alaaa$bpbbb4ccPcpccd(d\dtddd0dPdPep eи@e`e xepeePeef04fpPf tf0f`g Pgg0g`h4hXhhh`h h@hi@i`tii j0jk 0k@|k0l|ll(m@mm@nnzRx $`= FJ w?;*3$"DHXD l@ <H4TEBDD d GBI AABl ht p 0l Dh Xd4lp\AA ABDF ȢHDi C PDp D 0<@\ cdA\ d \4BED D(D0| (D ABBH Q (D DBBC D (A ABBE 4[BBA A(H0F(A ABB ,7AU J V@LAGG0g GAJ d DAG R CAB D XA@ G h H H| BHB B(F0A8F`  8D0A(B BBBH zYF A ,AG0 AE  AA txAx O o48ԪeBGD m DBH L DBF 4p QADD ^ CAE M CAG 4AU J OAdN;lN4 wAAG O CAD I CAC L4hBID D(GP (C ABBI | (F ABBI 4BKH { ABE D DBN XPBED A(F0s (D ABBB L (D ABBK D(D DBB,BAA  CBF H)Ac4dAAG  CAH I CAK $CpBIC ^ABDCBEL E(A0A8E@8D0A(B BBBD DBEL E(A0A8E@8D0A(B BBB8TRE~BEH A(A0b(D BBB8E`BBE A(A0J(D BBB4eBDD E GBH AAB8Ȱ]BBB D(D0G(A BBB@c THDq K D D $xMAU J \ D LL,TBEA A(D@8 (A ABBE m (A ABBE x<BBE B(D0D8Dc 8G0A(B BBBF R 8D0A(B BBBA Q 8I0A(B BBBM l @}DE G ( ADD U AAH ( ADD U AAH  Do E o I  hDo E o LhDo E o@ 7Bk C H\ (DBEE E(A0D8GP}8D0A(B BBBP E BHE A(D0JGfA\0D(A BBB DbH |BBE D(D0h (J BBBG I (D BBBE l` ܺBBB A(D0D@r 0A(A BBBG \ 0D(A BBBI ` 0D(D BBBB  LAGH BBD A(G@Z (A ABBH U(F ABB(8 ~DY C DR `AF C dd BEF E(A0A8G 8F0A(B BBBG # 8C0A(B BBBA h BBD  EBH T BBP F EBK f BBF Q EBH t BBH (8 CAOGCA$d rcBDA XABH :BBB B(D0A8F`8A0A(B BBB4 BKH y ABG D DBN \c$'BBB B(D0D8Dp^xM_xApK 8A0A(B BBBD | 8A0A(B BBBB N8K0A(B BBB` \ PXBAD D0  AABD `  DABI k  AABI 0(ZI EAGP H` \p^|at~\a Do E | D 4eBGD m DBH L DBF ,AG0 DK V AI 4(DuBDD ` ABC AAB`zYF A DE G \ D LQBEE B(A0A8G 8A0A(B BBBE H4:BBB E(A0D8D@^ 8D0A(B BBBA (T(AAG  CAD |dXQBB B(A0D8DP`HPt 8D0A(B BBBG HBBB B(H0D8GP  8D0A(B BBBA XHSTAD D0  AABK M  CABE D  DABM h,LDD u ABA L8=BBB B(A0A8G 8A0A(B BBBH ,$(cAG0 AG  AA |ThBBB B(A0A8DPz 8A0A(B BBBF C 8A0A(B BBBK { 8A0A(B BBBK @8BAD | DBG D ABI P AEJ .D F AA @<BAD G DBD ] AEE _ DBK 8\BBA A(G0[ (D ABBG p@BBD A(G@ (A ABBC x (A ABBB _ (G ABBE h (A ABBB 40\[BAG S DBE n DBD ph#BJA D(D0v (I ABBG l (I ABBF  (D ABBA `(I ABBH$BBB B(D0A8G`8D0A(B BBB8(oHBBA A(GP1(D ABB`d,BBB E(D0D8F` 8A0A(B BBBD N 8A0A(B BBBE DD P D k03IA z GBD P(B] A J F F J 0HAJ0 AD R AE nA,| |AQ N DR `AC F 0@ AJ` AD R AE nA, |AQ N DR `AC F X BIA A(GPp (C ABBD DXW`_XFP\ (F ABBI lpDD O E klBBE A(C0J@ 0D(A BBBD Q 0D(A BBBD d 0D(A BBBA |@GBBA A(D@E (A ABBK N (A ABBD u (A ABBE dHRP`HA@F (A ABBE `|LBBB B(A0A8DP 8D0A(B BBBI p 8C0A(B BBBD HBBB E(A0A8DPY 8D0A(B BBBI D,p:BID h BBE L BBH @ BBD TthBBB A(A0G@ 0A(A BBBE x 0C(A BBBF 80BBA A(D@ (A ABBD 8ZBBA A(I@ (A ABBD <DCBEB B(D0 (G BBBF >BBB B(A0C8Il 8A0A(B BBBE  EZBvDNBn BzDnB}AkB{A8,]BAA  ABG O FBA PhT^BBA D0  ABBE v  ABBE e  CBBD 4_BDG x ABH q CBJ 0X`#BEA G0Q  DBBH P(Ta)BBA D0b  DBBE L  DBBD q  DBBG \|0bBBA A(L@ (D ABBK Q (D ABBF d (D ABBC `cBBB A(G0 (D BBBD l (D BBBB  (D BBBD h@LgBMS A(Gp (A ABBH xWRxFp\ (F ABBI xW_xFp8mBEA a BBC K EBF H$nBBB B(A0A8D`k 8D0A(B BBBJ |4t\D d(Q0F8F@FHFPFXF`FhFpCxCCCCCCCCCCCCCCBO I H cTuBAG DBI O DBK S DBG  DBA L P|BEA D(D0 (A ABBA K (D DBBI \ |LD R J k| }LD R J k@ P}BDD0i ABJ V ABG v CBE L ,~BBB E(D0D8J( 8A0A(B BBBA l0!̂BBB E(A0DP 0C(B BBBE  0A(B BBBH V 0A(B BBBI !\!XH!T8BBB E(A0A8DP1 8D0A(B BBBA "H("DX<"@ BIA A(G`D (D ABBG DhWp_hF`b (D ABBE ("BAA Q ABH X"htBIB B(A0A8GzV_F\ 8C0A(B BBBK X #tBIB B(A0A8GzV_F\ 8C0A(B BBBK X|#tBIB B(A0A8GzV_F\ 8C0A(B BBBK $#Ԝ BIB B(D0D8GGGGGGGGGGGGGGGGGGGGGGGGGGS 8D0A(B BBBA AGGGGGGGGGGGGGGGGGGGGGGGGGS % BBB E(D0D8GTGGGGGGGGGGGGGGGGGGGGGGGGGGGG G G G G G G G G G G G G G G G G G G G G G G LW 8A0A(B BBBF p$&2BIB E(D0A8D 8D0A(B BBBJ DW_F^ 8A0A(B BBBH d&BBB B(A0A8D@ 8A0A(B BBBD j 8F0A(B BBBG D'BBA  DBD ,(R0`(C A BBB DH'DBBA  DBD ,(R0`(C A BBB D'BBA  DBD ,(R0`(C A BBB 'BIB B(D0A8G 8A0A(B BBBA DV_F\ 8C0A(B BBBI  8C0A(B BBBJ dh(4BEB B(D0A8D 8A0A(B BBBB  8A0A(B BBBH H(BBB B(A0A8DPN 8D0A(B BBBA )=l0)<BBB D(A0D@[ 0A(A BBBF V 0A(A BBBJ  0C(A BBBJ )lBIG B(D0O8PDdBFFBFABFQW 8D0A(B BBBE VRF,*`BIG B(D0O8PDdBFFBFABFQW 8D0A(B BBBE VRF\*TM BIB B(A0D8GV_F_ 8D0A(B BBBE +DD ~ AA <+ %BIB B(D0A8GL`F_ 8D0A(B BBBH drBAABADBFQ+%BIB B(D0A8GL`F_ 8D0A(B BBBH drBAABADBFQL,p DBIB B(D0A8GL`F_ 8D0A(B BBBF ldBABBGEFAQH,8BBE B(A0A8DP 8D0A(B BBBJ d -W BBB E(D0A8Dp 8A0A(B BBBB  8A0A(B BBBB -dDZ B CH-BBE B(D0A8Gp9 8D0A(B BBBC -$Dj B C E L.%BBE E(A0A8Dn 8D0A(B BBBA Hh.t-BEB B(A0A8D@ 8D0A(B BBBE `.2IBB A(D0 (D BBBB H (D BBBF I (D BBBE /5]BIB B(D0A8G^gBABBABBAQvHYF_ 8D0A(B BBBI /9 BMQ F(D0A8D+WEFFBFABFQ[ 8D0A(B BBBD WRFW_A@0C BMQ H(D0A8D)WEFFBFABFQ[ 8D0A(B BBBD WRFW_A0M BMQ H(D0A8D)WEFFBFABFQ[ 8D0A(B BBBD WRFW_Ax1W BMQ H(D0A8D)WEFFBFABFQ[ 8D0A(B BBBD WRFW_A2a BMN H(D0A8D,WEFFBFABFQ[ 8D0A(B BBBD WRFW_A2kBMG B(D0L8D 8A0A(B BBBJ dW_F^ 8A0A(B BBBH W_A 8A0A(B BBBH V`Gd3}BIB B(D0A8GORF_ 8D0A(B BBBE KrBAABADBFQ3,BIB B(D0A8GORF_ 8D0A(B BBBE KrBAABADBFQ|4PBIB B(D0A8GORF_ 8D0A(B BBBE KrBAABADBFQ5tBIB B(D0A8GORF_ 8D0A(B BBBE SdBABBGEFAQ5BIB B(D0A8GORF_ 8D0A(B BBBE SdBABBGEFAQ 6BIB B(D0A8GORF_ 8D0A(B BBBE KrBAABADBFQ6BIB B(D0A8GORF_ 8D0A(B BBBE SdBABBGEFAQ87BIB B(D0A8GORF_ 8D0A(B BBBE KrBAABADBFQ7( BIG B(L0F8KdBFFBFABFQ[ 8D0A(B BBBI VKFLP8BEB E(A0A8D 8D0A(B BBBG @8l!bBB A(A0D@S 0D(A BBBF $8WBDA LABH 9*BBE B(A0A8DP8D0A(B BBB@X9BBE A(A0D@z 0D(A BBBD H90tBHA D(G0s (D ABBF N(D ABBX9d[#BIE E(A0A8DPRF_ 8D0A(B BBBD XD:h*BIB E(A0A8GPRFb 8D0A(B BBBE :&KCBIB B(A0A8Jz VRFb 8D0A(B BBBF W`F GIB!GNA8;itBMG B(A0K8JK VRFa 8D0A(B BBBK  V`GIRA;y$BIB B(A0A8JVRFb 8D0A(B BBBI MeFABFBBRgLLEBFABFBY!W_A)V`G<`"BIB B(A0A8J eBBBBABTgVRFb 8D0A(B BBBA IBKHBABBAYW_AIV`Gh=#`BIE B(A0A8GtBAABADBFMWKFb 8D0A(B BBBI BGA\>3TBIG E(A0A8ZWRF_ 8D0A(B BBBD h>CBIG B(D0A8ZrBAFBFBBAMFMJFBFBGARWRF_ 8D0A(B BBBD ? ^ BBB B(D0D8G& 8D0A(B BBBE _HPB=EG^AhLBl?n\ BIQ N(E0Q8ZEJIAG 8A0A(B BBBD MORFt@z BIE B(D0A8D!W_F^ 8A0A(B BBBH   8C0A(B BBBD @&+BIG B(A0Q8c9YQAk 8D0A(B BBBK QYTAEORFYRBYRB\QB BQABRDERBDQA\AбTBIG E(A0A8ZWRF_ 8D0A(B BBBD XA4 BBB B(A0A8DP 8D0A(B BBBA aXN`gXAP HBBBB B(A0A8GbHHK/BFFAAAAACNREFFAAAAACNYEFFAAAAACNYEFFAAAAACN`EFFAAAAACNQTbAoEFFAAAAACNgEFFAAAAACNEFFAAAAACNxTcBoEFFAAAAACNV[MMPoEFFAAAAACN`EFFAAAAACNQMFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMhoEFFAAAAACNDTTMMFFFIoEFFAAAAACNEFFAAAAACNgEFFAAAAACNV[\BoEFFAAAAACNgEFFAAAAACNgEFFAAAAACNnEFFAAAAACN`EFFAAAAACNgEFFAAAAACNYEFFAAAAACNtEFFAAFAAAKgEFFAAAAACN`EFFAAAAACNtEFFAAFAAAKtEFFAAFAAAKtEFFAAFAAAKtEFFAAFAAAKtEFFAAFAAAKgEFFAAAAACNtEFFAAFAAAKgEFFAAAAACNRTTMMFFFIoEFFAAAAACNRTTMMFFFFFIoEFFAAAAACNV[MMMFIoEFFAAAAACN`EFFAAAAACNtEFFAAFAAAK`EFFAAAAACNV[MMMFFFIoEFFAAAAACNtEFFAAFAAAKV[MMFFFFFFFFFFPoEFFAAAAAFNEMFFFFFFFFFFFFFFFMMMZoEFFAAAAACNQTTMMFFFFFFFIoEFFAAAAACN|[MMFFFFFFFFFFPoEFFAAAAACNV[MMMFFFIoEFFAAAAAFNV[MMMFIoEFFAAAAACNtTbAoEFFAAAAACNREFFAAAAACN_8A0A(B BBB\N BIB B(A0A8G$HYF_ 8D0A(B BBBA |dNBBB E(A0D8G WRFm 8D0A(B BBBB  W_FVaG NBLB B(D0A8Jq 8A0A(B BBBA GGGGGGGGGGGGGGGGGGGGGGGGGFFFFFFFFFFCCCCCCCCCCCCCCCBS@PWAJvLKA AF d CA ,LP|AQ N DR `AC F H|P0IBAJvLKA ABH l CBA ,P4|AQ N DR `AC F \P>-BIG B(A0A8G Y_Fb 8D0A(B BBBG XQd$ BIB E(A0A8J!XBFABFAEFQ^ 8D0A(B BBBH zVRF(W_A9V`GXR04DBIB E(A0A8JPRFb 8D0A(B BBBG dRtWBMG B(A0Q8JVRFb 8D0A(B BBBB H^AKW`GRBMG B(D0A8QWRF_ 8D0A(B BBBD gFFBFBBFAO_W_F\SBIB B(A0A8J? 8D0A(B BBBI L`FlS+BMG E(A0A8Tx WRFb 8D0A(B BBBI  V`GTT& BIG B(D0O8PdkBAFBFABATW 8D0A(B BBBE VRFT 1 BIG B(D0O8PddBFFBFABFQW 8D0A(B BBBE VRFlU0; BIG B(D0O8PddBFFBFABFQW 8D0A(B BBBE VRFUJ  V@E%G]$VXE 88VTEIGED D(F0a(A ABBG8tVhEYGED D(F0t(A ABBDHVEBEH H(KP (E ABBK [(A AFB8V`FIGED D(F0b(A ABBFT8WtF-BBE H(H0K@ 0D(A BBBE m0A(A FBB8WLGIGED D(F0b(A ABBF8W`GaGED D(F0v(A ABBJ<XGyGED D(G0O(A ABBHHHXGBBE I(H0K8K` 8E0A(B BBBE 8XIIGED D(F0b(A ABBFHX,IBBE B(H0H8KP 8F0A(B BBBD 8YJIGED D(F0b(A ABBFHXYJAG@ AI t AK 1 AF J EI J AE HYMAG0 AC q AF B AE J EA J AE Y|OGJZOGJ ZOGJ8ZO 0LZOvAD@O EAH `Z,Q$D _ZDQD UZLQ(D cZdQD UZlQD U0ZtQAG@ AO t EA A,[@SDQD[HSSAG }Ad[S/AG ]A[SD U[SB\ ][SCD z([TAG V AI XA$[tTiBFG0IAK \TNAG DA@\TDIX\T3D g A t\UAG _ AE l\UBFB A(A0Gpg 0D(A BBBK V 0D(A BBBG / 0D(A BBBA ]DX&IXL$]XX BFG E(D0A8J 8A0A(E BBBF Lt]bRBED A(G`e (A ABBB t (C ABBA 0]dka L nJHA G L<]Te&AG  AL l AK L AC O DE 8^DfWAG AA X^fIO0 EA ,|^PgCAGP# AD _ AH ^pjAG@ DD ^Lk_D Z^kD _ R @ #{  T @   h ) : ^ h 8 z ! " @  . ` )G (r x     7 F d  c  ' 2 = H S a _ i `  . 9 ` )  ] ' Y 3 U ? M Q Y j     (  X    K   G   ( C 4 ~ B ] m `            x   -  7  D  Q  w y  p  `g          )! ? ! *! r 8! d g`! j! z! ! ; ! h ! 4!  ! [ "  " `K D" ` U" h c" y" " 7 " X " " " T# # 5# U# b#  q# ` # # 3 # @ %# 3# $ $ $ ($ H <$ Z$ e$ Z s$ T $ $ N $  $ ; $ $ P $ % /  % % '% H 5% x E% p ]% j% B x% % % % @ % 8 % % + % , % & & ' & x & 8 /& ? i W& a& 0 K& & ( & &  & &  & p & h  '  ' &' ` 6'  D' S' q `' l m' w'  ' `%  ' ' @ ' '  X ( 0 ( &( $O( X _( n( ( ( ( g ( (  ( &) 0 &) @ N) X) c)  o) ) ) H ) ) ) ) ) ) ) * b * $* ` L* ] Y* h* * * 8* * * * * + !+ 4+ ?+ X L+ ]+ @ + + + + +  + @ + @ + S + , ", 1, N >, L, [, l,  x, I , , ,  , ,  - - E-  Q- _- @ l- x ~- 6 - - x - - h -  - - 1 . @ #*. !S. v. %. 8 . o . '. @ 2/ / , +/ ' 8/ x K/  W/ b/ h q/  / ` / / / 0 ` Z=0 G0 U0 h h0 B0 0 a 0 " 0 X 0  0  0 @ 1 p >)1 $R1 ^1 l1 z1 1 1 ` 31  1 1 `e 2 02 Y > X2 O g2 J 2 2 2 2 0 2 2 3 >3 Y3 X l3 3 3 (3 #3 3 4 44 X4 d4 ` 4 H 4 ( 4 4 4 4 4 A 4 p 4 ` 5 5 : -5 95 ` [5 I "5 5 5 5 5  5 3 5 @ = 6 6 (6 <6 @; "d6 P u6 1 6 6 , 6 H 6 6 6 / 7 P #7 8 47 H G7 U7 $ }7  7 7 z 7 ]7 0 7 7 8 8 X 8 ( 08 J8 ( ]8 t k8 % z8  8  8 8 n 8 h 8  8   9  +9  <9 R9 H d9 u9  9 9  9  9 9 x 9 9 b 9 :  : : #: 0: \ >: h S: `: m: ~: :  : V : : : : P ; ;  $;  7; F; S; J a;  ; ; ;  ; ;  ; < ` 9<  P< w< <  < < ` e< D = > =  = *= 7= C= R= m= @ != = = X = = = > N+> 8 => I> Z> f> q> {> > > > > > > > 8 > ? ? o ;? E? P? _? n? }? 2 ? P ? &? ? @ *@ 9@ P@ _@ n@ x@ @ @ @ x @ H @ 8 @ @ h @ $A 1A Z XA eA X vA A A ( A A , A A & B B B CB zLcZB L:mB B cB 'B  B  "C DC `gC eC C pC uC z D D Q?D 0%hD %:yD 'D (D +D 01D 6SE `7L>E 8=iE ?cE `AE `D8E E.E FE HE IF 0M[0F N#XF N$sF ;PHF Q,FFFF YDF @Z3G [AG aG d|G dG Pg|H g,H iDNH icH kGH 0oLH sH @u: I v3I xZIP sI pzZI {CI }>I | I I `J P4J #LJ )iJ PJ @J 0J J K/K JKiK \K K K LK @LL 4L aL LH L L L 86M "M pM  M @M tM@ N Pt1N t`N P tN ` N #2N (N /O 029O 4kO 7O @=O 0EO H=O IP MIP nP 0UP \M P iP iQ l%LQ 0r%Q `xDQ Q ~ R W 3R d`R `R 0R R R R @S ]\S  S  S @ T  LT ` T T T (U paU U U V 0'MV /V 8 V BV V P!W RW7W RJW R_W pUtzW U[#WWWXX5XQXhXXXXXXYY Py*YYeY|YYYYYYZ1ZHZxdZp{ZhZ KCZ`ZX[P/[HK[ b[~[[[[[[\.\J\@a\8}\0\(\( \ pt] ']C]Z]v]]]]]]^&^B^Y^u^^^^^^_%_xA_ @\y$_p_h_`_X_P_H`@2`8N`0e`(` ` `"` a(a?ax[apraha`aXaPaHa@ b8'b Xb `b0b(b bb &c Thcccccc%d _dvdddddd e'e8 Ce  |eeepehe`eXfP%fH@f@Vf8qf0f(f fffxgg5gKgfg|ggggggh*h@h[hqhhhhhxhpihi`5iXPifiiiiii j#j>jTjojPjHj@j8j0j(k k3k hNk \ k @ kkk &++lAl\lXlll`l@m8,mBm]mPmmmHmn,ndnznxnnpnhnx6o`LoXgopoPoHohp 6T>pTpnppp `F4 pppq)q UEq_q0 |q q q q qr ;r Cr = Tr Kr _rrrrrr`@rr @ s-s@^s8s0s(s 't]t@kt tt t 9u xu uuuuv` Sv@ v  vvxvpwh2w {w`wXwPwHw x Xx x x@x8y0y(5y` yy@ y yyyz  ]z z z { L{ {` {@ |  U| | | } B} }}` }@ }  5~ n~ ~ ~ 0 l` @   & d   < z` @   3 g O ̂ Z߂ t p}WL Ѓ|j PI |ă >-2Ie|˄ `  `4DD@[8w0( ݅'xCpZhv`XPH܆ W1Mdʇ0xLpch`XPɈH@80/(K 0a ‰ى ( |o0( ъ + #?Vr؋ ">  w   @ h@@P/H V`0l@`PPʍ@ -PHPb@{@P ׎`x  D @ ~ `  v i  @q = `d y a g @R  @H ' ?  j 0  $     KT ` >  ђ   \ e ֓ =  K    t  5 c r Z   `P Z  F o $ 7 ` & >  /    ` XU  ԗ Z Z  ;  " ` ] " } } Ιٙ pۙ  7 Cbr |      " * ɚ Қ ۚ (7 4Ι?hM|8Ǜܛ ->Pew  I Ԝ B  0S 0CP]m{Ν " 2 ".9 &R /i~̞ݞ&@ Ic ˟  .GY j| 3 Ϡ (ޠ  8,   9K^l  {ǡOء' P! :JZgu NĢԢ Y"9  ZO` Pt P `   Σܣ%G 0CT p `n{  W @yߤyF';Le   + ͥ٥  & 5 HZf~ ' ɦܦ 0CR %l  \ ç֧2 AQ  V]n P-ը  $5ETu  _ȩ 0ک p C   0 0F  ^m P$ Ҫު%: I[ p k  w  &ȫ ߫ a(=I Zo @ ̬ @ ܬ p / i= 0IZn `Iŭح w,AM]y  R Ү @% :?N_q ʯׯ"  PI8P^q~ʰް_generator.pyx.c__pyx_array___len____pyx_memoryview__get_base__pyx_memoryview___len____pyx_memoryviewslice__get_base__pyx_tp_traverse_5numpy_6random_10_generator_Generator__pyx_getprop_5numpy_6random_10_generator_9Generator_bit_generator__pyx_tp_traverse_Enum__pyx_specialmethod___pyx_MemviewEnum___repr____Pyx_CyFunction_get_qualname__Pyx_CyFunction_get_globals__Pyx_CyFunction_get_closure__Pyx_CyFunction_get_code__pyx_typeinfo_cmp__pyx_tp_new_Enum__pyx_mstate_global_static__pyx_tp_new_5numpy_6random_10_generator_Generator__Pyx_PyObject_SetAttrStr__Pyx_CyFunction_get_annotations__Pyx_CyFunction_get_dict__Pyx_PyObject_GetAttrStr__Pyx_PyObject_Call__pyx_f_5numpy_6random_10_generator__shuffle_int__Pyx_PyMethod_New__Pyx_CyFunction_get_name__Pyx_CyFunction_CallMethod__Pyx_CyFunction_repr__Pyx_PyNumber_IntOrLongWrongResultType__Pyx_PyUnicode_Join__Pyx_CyFunction_get_kwdefaults__pyx_tp_dealloc_memoryview__pyx_memoryview_thread_locks_used__pyx_memoryview_thread_locks__pyx_tp_dealloc_Enum__pyx_sq_item_array__pyx_setprop_5numpy_6random_10_generator_9Generator__bit_generator__pyx_tp_dealloc_5numpy_6random_10_generator_Generator__Pyx_CyFunction_set_doc__pyx_tp_clear_Enum__pyx_tp_clear_5numpy_6random_10_generator_Generator__Pyx__GetException__Pyx_ErrRestoreInState__Pyx_Import__Pyx_CyFunction_clear__Pyx_CyFunction_dealloc__pyx_tp_clear_memoryview__Pyx_SetVtable__Pyx_ImportVoidPtr_3_0_11__Pyx_ImportFunction_3_0_11__Pyx_copy_spec_to_module__pyx_pymod_createmain_interpreter_id.0__pyx_m__pyx_tp_traverse_memoryview__Pyx_CyFunction_traverse__Pyx_IsSubtype__Pyx_CyFunction_Vectorcall_O__Pyx_CyFunction_get_doc__Pyx_PyUnicode_Equals__Pyx_CyFunction_CallAsMethod__Pyx_CyFunction_set_annotations__Pyx_CyFunction_set_kwdefaults__Pyx_CyFunction_set_defaults__Pyx_CyFunction_set_dict__Pyx_CyFunction_set_qualname__Pyx_CyFunction_set_name__Pyx_IternextUnpackEndCheck.part.0__Pyx_CyFunction_New.constprop.0__Pyx_CyFunction_Vectorcall_NOARGS__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD__Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS__Pyx_ImportType_3_0_11.constprop.0__Pyx_BufFmt_TypeCharToAlignment.constprop.0__Pyx__PyObject_LookupSpecial.constprop.0__Pyx_PyObject_GetSlice.constprop.0__pyx_fatalerror.constprop.0__func__.37__Pyx_CheckKeywordStrings.constprop.0__pyx_pw_5numpy_6random_10_generator_9Generator_7__getstate____Pyx_ParseOptionalKeywords.constprop.0__Pyx_Raise.constprop.0__Pyx_CreateStringTabAndInitStrings__pyx_k___pyx_k_1__pyx_k_1_0__pyx_k_1_2__pyx_k_A__pyx_k_ASCII__pyx_k_All_dimensions_preceding_dimensi__pyx_k_AssertionError__pyx_k_Axis_argument_is_only_supported__pyx_k_Buffer_view_does_not_expose_stri__pyx_k_Can_only_create_a_buffer_that_is__pyx_k_Cannot_assign_to_read_only_memor__pyx_k_Cannot_create_writable_memory_vi__pyx_k_Cannot_index_with_type__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_Cannot_transpose_memoryview_with__pyx_k_Construct_a_new_Generator_with_t__pyx_k_Dimension_d_is_not_direct__pyx_k_Ellipsis__pyx_k_Empty_shape_tuple_for_cython_arr__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Generator__pyx_k_Generator___getstate__pyx_k_Generator___reduce__pyx_k_Generator___setstate__pyx_k_Generator__generator_ctor__pyx_k_Generator_beta__pyx_k_Generator_beta_line_364__pyx_k_Generator_binomial__pyx_k_Generator_binomial_line_2975__pyx_k_Generator_bytes__pyx_k_Generator_bytes_line_706__pyx_k_Generator_chisquare__pyx_k_Generator_chisquare_line_1644__pyx_k_Generator_choice__pyx_k_Generator_choice_line_741__pyx_k_Generator_dirichlet__pyx_k_Generator_dirichlet_line_4427__pyx_k_Generator_exponential__pyx_k_Generator_exponential_line_445__pyx_k_Generator_f__pyx_k_Generator_f_line_1464__pyx_k_Generator_gamma__pyx_k_Generator_gamma_line_1385__pyx_k_Generator_geometric__pyx_k_Generator_geometric_line_3427__pyx_k_Generator_gumbel__pyx_k_Generator_gumbel_line_2422__pyx_k_Generator_hypergeometric__pyx_k_Generator_hypergeometric_line_34__pyx_k_Generator_integers__pyx_k_Generator_integers_line_579__pyx_k_Generator_laplace__pyx_k_Generator_laplace_line_2336__pyx_k_Generator_logistic__pyx_k_Generator_logistic_line_2541__pyx_k_Generator_lognormal__pyx_k_Generator_lognormal_line_2624__pyx_k_Generator_logseries__pyx_k_Generator_logseries_line_3637__pyx_k_Generator_multinomial__pyx_k_Generator_multinomial_line_3963__pyx_k_Generator_multivariate_hypergeom__pyx_k_Generator_multivariate_hypergeom_2__pyx_k_Generator_multivariate_normal__pyx_k_Generator_multivariate_normal_li__pyx_k_Generator_negative_binomial__pyx_k_Generator_negative_binomial_line__pyx_k_Generator_noncentral_chisquare__pyx_k_Generator_noncentral_chisquare_l__pyx_k_Generator_noncentral_f__pyx_k_Generator_noncentral_f_line_1566__pyx_k_Generator_normal__pyx_k_Generator_normal_line_1188__pyx_k_Generator_pareto__pyx_k_Generator_pareto_line_2062__pyx_k_Generator_permutation__pyx_k_Generator_permutation_line_4927__pyx_k_Generator_permuted__pyx_k_Generator_permuted_line_4633__pyx_k_Generator_poisson__pyx_k_Generator_poisson_line_3256__pyx_k_Generator_power__pyx_k_Generator_power_line_2235__pyx_k_Generator_random__pyx_k_Generator_random_line_301__pyx_k_Generator_rayleigh__pyx_k_Generator_rayleigh_line_2736__pyx_k_Generator_shuffle__pyx_k_Generator_shuffle_line_4794__pyx_k_Generator_spawn__pyx_k_Generator_spawn_line_243__pyx_k_Generator_standard_cauchy__pyx_k_Generator_standard_cauchy_line_1__pyx_k_Generator_standard_exponential__pyx_k_Generator_standard_exponential_l__pyx_k_Generator_standard_gamma__pyx_k_Generator_standard_gamma_line_12__pyx_k_Generator_standard_normal__pyx_k_Generator_standard_normal_line_1__pyx_k_Generator_standard_t__pyx_k_Generator_standard_t_line_1871__pyx_k_Generator_triangular__pyx_k_Generator_triangular_line_2874__pyx_k_Generator_uniform__pyx_k_Generator_uniform_line_1009__pyx_k_Generator_vonmises__pyx_k_Generator_vonmises_line_1978__pyx_k_Generator_wald__pyx_k_Generator_wald_line_2805__pyx_k_Generator_weibull__pyx_k_Generator_weibull_line_2137__pyx_k_Generator_zipf__pyx_k_Generator_zipf_line_3338__pyx_k_HYPERGEOM_MAX__pyx_k_ImportError__pyx_k_Incompatible_checksums_0x_x_vs_0__pyx_k_IndexError__pyx_k_Index_out_of_bounds_axis_d__pyx_k_Indirect_dimensions_not_supporte__pyx_k_Insufficient_memory_for_multivar__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_Invalid_mode_expected_c_or_fortr__pyx_k_Invalid_shape_in_axis__pyx_k_K__pyx_k_MemoryError__pyx_k_MemoryView_of_r_at_0x_x__pyx_k_MemoryView_of_r_object__pyx_k_None__pyx_k_NotImplementedError__pyx_k_O__pyx_k_Out_of_bounds_on_buffer_access_a__pyx_k_Output_size__pyx_k_OverflowError__pyx_k_PCG64__pyx_k_PickleError__pyx_k_Probabilities_are_not_non_negati__pyx_k_Probabilities_contain_NaN__pyx_k_Probabilities_do_not_sum_to_1_Se__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeWarning__pyx_k_Sequence__pyx_k_Step_may_not_be_zero_axis_d__pyx_k_T__pyx_k_TypeError__pyx_k_Unable_to_convert_item_to_object__pyx_k_Unsupported_dtype_r_for_integers__pyx_k_Unsupported_dtype_r_for_random__pyx_k_Unsupported_dtype_r_for_standard__pyx_k_Unsupported_dtype_r_for_standard_2__pyx_k_Unsupported_dtype_r_for_standard_3__pyx_k_UserWarning__pyx_k_ValueError__pyx_k_View_MemoryView__pyx_k_When_method_is_count_sum_colors__pyx_k_When_method_is_marginals_sum_col__pyx_k__12__pyx_k__14__pyx_k__167__pyx_k__2__pyx_k__3__pyx_k__6__pyx_k__7__pyx_k__94__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_samp__pyx_k_a_must_be_a_positive_integer_unl__pyx_k_a_must_be_a_sequence_or_an_integ__pyx_k_a_original__pyx_k_abc__pyx_k_acc__pyx_k_add__pyx_k_ahigh__pyx_k_all__pyx_k_allclose__pyx_k_allocate_buffer__pyx_k_alow__pyx_k_alpha__pyx_k_alpha_0__pyx_k_alpha_arr__pyx_k_alpha_csum_arr__pyx_k_alpha_csum_data__pyx_k_alpha_data__pyx_k_and__pyx_k_any__pyx_k_arange__pyx_k_arr__pyx_k_array__pyx_k_array_is_read_only__pyx_k_asarray__pyx_k_ascontiguousarray__pyx_k_astype__pyx_k_astype_np_float64_1_0_The_pvals__pyx_k_asyncio_coroutines__pyx_k_at_0x_X__pyx_k_atol__pyx_k_ax__pyx_k_axis__pyx_k_axlen__pyx_k_axstride__pyx_k_b__pyx_k_base__pyx_k_beta__pyx_k_beta_a_b_size_None_Draw_samples__pyx_k_binomial__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_gen__pyx_k_bit_generator__pyx_k_bool__pyx_k_both_ngood_and_nbad_must_be_less__pyx_k_buf__pyx_k_buf_ptr__pyx_k_bytes__pyx_k_bytes_length_Return_random_byte__pyx_k_c__pyx_k_capsule__pyx_k_casting__pyx_k_cdf__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice__pyx_k_choice_a_size_None_replace_True__pyx_k_cholesky__pyx_k_class__pyx_k_class_getitem__pyx_k_cline_in_traceback__pyx_k_cnt__pyx_k_collections__pyx_k_collections_abc__pyx_k_colors__pyx_k_colors_must_be_a_one_dimensional__pyx_k_colors_ptr__pyx_k_contiguous_and_direct__pyx_k_contiguous_and_indirect__pyx_k_copy__pyx_k_copyto__pyx_k_count__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_symmetric_posi__pyx_k_csum__pyx_k_cumsum__pyx_k_cutoff__pyx_k_d__pyx_k_default_rng__pyx_k_default_rng_line_4999__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dict__pyx_k_diric__pyx_k_dirichlet__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_disable__pyx_k_dmax_lam__pyx_k_dn__pyx_k_dot__pyx_k_double__pyx_k_dp__pyx_k_dtype__pyx_k_dtype_2__pyx_k_dtype_is_object__pyx_k_eigh__pyx_k_empty__pyx_k_empty_like__pyx_k_enable__pyx_k_encode__pyx_k_endpoint__pyx_k_enter__pyx_k_enumerate__pyx_k_eps__pyx_k_equal__pyx_k_error__pyx_k_exc__pyx_k_exit__pyx_k_exponential__pyx_k_exponential_scale_1_0_size_None__pyx_k_f__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_factor__pyx_k_final_shape__pyx_k_finfo__pyx_k_flags__pyx_k_flat_found__pyx_k_fleft__pyx_k_float32__pyx_k_float64__pyx_k_fmode__pyx_k_format__pyx_k_fortran__pyx_k_found__pyx_k_fright__pyx_k_full__pyx_k_func__pyx_k_g__pyx_k_gamma__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_gc__pyx_k_generator_ctor__pyx_k_geometric__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_getstate__pyx_k_got__pyx_k_got_differing_extents_in_dimensi__pyx_k_greater__pyx_k_gumbel__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_hash_set__pyx_k_hasobject__pyx_k_high__pyx_k_high_2__pyx_k_high_low__pyx_k_high_low_range_exceeds_valid_bou__pyx_k_hypergeometric__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_i__pyx_k_id__pyx_k_idx__pyx_k_idx_data__pyx_k_ignore__pyx_k_imatmul__pyx_k_import__pyx_k_in__pyx_k_index__pyx_k_initializing__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integers__pyx_k_integers_low_high_None_size_Non__pyx_k_intp__pyx_k_invacc__pyx_k_invalid_colors__pyx_k_is_coroutine__pyx_k_is_not_compatible_with_broadcas__pyx_k_is_scalar__pyx_k_isenabled__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_it__pyx_k_item__pyx_k_itemsize__pyx_k_itemsize_0_for_cython_array__pyx_k_j__pyx_k_k__pyx_k_kappa__pyx_k_l__pyx_k_lam__pyx_k_laplace__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_length__pyx_k_less__pyx_k_lnbad__pyx_k_lngood__pyx_k_lnsample__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_low__pyx_k_low_2__pyx_k_main__pyx_k_marginals__pyx_k_mask__pyx_k_masked__pyx_k_matmul__pyx_k_max__pyx_k_max_index__pyx_k_max_lam_arr__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_and_cov_must_not_be_complex__pyx_k_mean_must_be_1_dimensional__pyx_k_memory_allocation_failed_in_perm__pyx_k_memview__pyx_k_method__pyx_k_method_must_be_count_or_marginal__pyx_k_method_must_be_one_of_eigh_svd_c__pyx_k_mnarr__pyx_k_mnix__pyx_k_mode__pyx_k_mode_right__pyx_k_msg__pyx_k_mu__pyx_k_multin__pyx_k_multinomial__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_hypergeometric__pyx_k_multivariate_hypergeometric_col__pyx_k_multivariate_normal__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_n_arr__pyx_k_n_children__pyx_k_n_too_large_or_p_too_small_see_G__pyx_k_n_uint32__pyx_k_n_uniq__pyx_k_name__pyx_k_name_2__pyx_k_nbad__pyx_k_ndim__pyx_k_negative_binomial__pyx_k_negative_binomial_n_p_size_None__pyx_k_negative_dimensions_are_not_allo__pyx_k_new__pyx_k_new_2__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_ni__pyx_k_no_default___reduce___due_to_non__pyx_k_nonc__pyx_k_noncentral_chisquare__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_normalize_axis_index__pyx_k_np__pyx_k_nsamp__pyx_k_nsample__pyx_k_nsample_must_be_an_integer__pyx_k_nsample_must_be_nonnegative__pyx_k_nsample_must_not_exceed_d__pyx_k_nsample_sum_colors__pyx_k_num_colors__pyx_k_num_variates__pyx_k_numpy__pyx_k_numpy__core_multiarray_failed_to__pyx_k_numpy__core_umath_failed_to_impo__pyx_k_numpy_lib_array_utils__pyx_k_numpy_linalg__pyx_k_numpy_random__generator__pyx_k_numpy_random__generator_pyx__pyx_k_obj__pyx_k_object_which_is_not_a_subclass__pyx_k_offset__pyx_k_offsets__pyx_k_oleft__pyx_k_omode__pyx_k_on__pyx_k_onbad__pyx_k_ongood__pyx_k_onsample__pyx_k_operator__pyx_k_order__pyx_k_oright__pyx_k_out__pyx_k_out_must_be_a_numpy_array__pyx_k_out_must_have_the_same_shape_as__pyx_k_p__pyx_k_p_arr__pyx_k_p_must_be_1_dimensional__pyx_k_p_sum__pyx_k_pack__pyx_k_pareto__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_parr__pyx_k_pcg64__pyx_k_permutation__pyx_k_permutation_x_axis_0_Randomly_p__pyx_k_permuted__pyx_k_permuted_x_axis_None_out_None_R__pyx_k_pi__pyx_k_pickle__pyx_k_pickle_2__pyx_k_pix__pyx_k_poisson__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_pop_size__pyx_k_pop_size_i__pyx_k_power__pyx_k_power_a_size_None_Draws_samples__pyx_k_prod__pyx_k_psd__pyx_k_pvals__pyx_k_pvals_must_have_at_least_1_dimen__pyx_k_pyx_PickleError__pyx_k_pyx_checksum__pyx_k_pyx_result__pyx_k_pyx_state__pyx_k_pyx_type__pyx_k_pyx_unpickle_Enum__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_random__pyx_k_random_size_None_dtype_np_float__pyx_k_randoms__pyx_k_randoms_data__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_reduce_2__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_register__pyx_k_replace__pyx_k_res__pyx_k_reshape__pyx_k_result__pyx_k_ret__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_k_rmatmul__pyx_k_rng__pyx_k_rtol__pyx_k_s__pyx_k_safe__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_self__pyx_k_set_size__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_axis_0_Modify_an_arra__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_size_i__pyx_k_slice_repr__pyx_k_slices__pyx_k_sort__pyx_k_spawn__pyx_k_spawn_n_children_Create_new_ind__pyx_k_spec__pyx_k_sqrt__pyx_k_stacklevel__pyx_k_standard_cauchy__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_dtype__pyx_k_standard_t__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_start__pyx_k_state__pyx_k_status__pyx_k_step__pyx_k_stop__pyx_k_str__pyx_k_stride__pyx_k_strided_and_direct__pyx_k_strided_and_direct_or_indirect__pyx_k_strided_and_indirect__pyx_k_strides__pyx_k_stringsource__pyx_k_struct__pyx_k_subtract__pyx_k_sum__pyx_k_sum_colors_must_not_exceed_the_m__pyx_k_sum_pvals__pyx_k_svd__pyx_k_swapaxes__pyx_k_sys__pyx_k_sz__pyx_k_t__pyx_k_take__pyx_k_temp__pyx_k_temp_arr__pyx_k_test__pyx_k_to_shuffle__pyx_k_tobytes__pyx_k_tol__pyx_k_total__pyx_k_totsize__pyx_k_triangular__pyx_k_triangular_left_mode_right_size__pyx_k_u__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_unable_to_allocate_array_data__pyx_k_unable_to_allocate_shape_and_str__pyx_k_uniform__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_uniform_samples__pyx_k_unique__pyx_k_unique_indices__pyx_k_unpack__pyx_k_update__pyx_k_v__pyx_k_val__pyx_k_val_arr__pyx_k_val_data__pyx_k_variates__pyx_k_variates_ptr__pyx_k_version_info__pyx_k_vh__pyx_k_vonmises__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_writeable__pyx_k_x__pyx_k_x_ptr__pyx_k_you_are_shuffling_a__pyx_k_zeros__pyx_k_zig__pyx_k_zipf__pyx_k_zipf_a_size_None_Draw_samples_f__Pyx_GetVtable.isra.0__Pyx_MergeVtables__Pyx__ExceptionReset.isra.0__Pyx__ExceptionSave.isra.0_copy_strided_to_strided.isra.0__Pyx_CyFunction_reduce__pyx_getprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx_GetItemInt_Fast.constprop.0__Pyx_PyInt_BoolEqObjC.constprop.0__pyx_sq_item_memoryview__Pyx_PyErr_GivenExceptionMatchesTuple__pyx_tp_dealloc__memoryviewslice__pyx_tp_traverse__memoryviewslice__Pyx_CyFunction_get_defaults__Pyx_TypeTest__pyx_memoryview__slice_assign_scalar__Pyx_PyErr_GivenExceptionMatches.part.0__Pyx_ImportFrom__pyx_tp_clear__memoryviewslice__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx_PyErr_ExceptionMatchesInState.isra.0__Pyx_PyObject_FastCallDict.constprop.0__pyx_memoryview_refcount_objects_in_slice__pyx_tp_dealloc_array__Pyx_GetKwValue_FASTCALL__Pyx_PyInt_As_size_t__Pyx_PyInt_As_long__Pyx_PyInt_As_int__Pyx_CyFunction_get_is_coroutine__Pyx_PyObject_GetIndex__Pyx_PyInt_As_npy_intp.part.0__Pyx_PyObject_FastCallDict.constprop.1__Pyx_PyObject_CallMethod0__Pyx_PyType_Ready__Pyx_AddTraceback__pyx_dict_version.2__pyx_dict_cached_value.1__pyx_code_cache__pyx_getprop___pyx_memoryview_base__pyx_memslice_transpose__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_memoryview_is_f_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_memoryview_is_c_contig__pyx_MemviewEnum___init____pyx_getprop___pyx_array_memview__pyx_memoryview_new__pyx_pw_5numpy_6random_10_generator_9Generator_11__reduce____pyx_unpickle_Enum__set_state__pyx_getprop___pyx_memoryview_size__pyx_getprop___pyx_memoryview_nbytes__pyx_getprop___pyx_memoryview_suboffsets__pyx_getprop___pyx_memoryview_strides__pyx_builtin_ValueError__pyx_getprop___pyx_memoryview_shape__pyx_memoryview_err_dim__pyx_memoryview_copy_contentsDIGIT_PAIRS_10__pyx_memoryview_getbuffer__pyx_memoryview___str____pyx_memoryview_setitem_indexed__pyx_tp_getattro_array__pyx_mp_ass_subscript_array__pyx_array_get_memview__pyx_pw_5numpy_6random_10_generator_9Generator_5__str____pyx_memoryview___cinit__.constprop.0__pyx_builtin_AssertionError__pyx_tp_new_memoryview__pyx_vtabptr_memoryview__pyx_memoryview_fromslice__pyx_vtabptr__memoryviewslice__pyx_memoryview_copy_object_from_slice__pyx_getprop___pyx_memoryview_T__pyx_tp_new__memoryviewslice__pyx_getprop___pyx_memoryview_itemsize__pyx_getprop___pyx_memoryview_ndim__pyx_array___getattr____pyx_memoryview_setitem_slice_assign_scalar__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr____pyx_builtin_id__pyx_specialmethod___pyx_memoryview___repr____pyx_pf_5numpy_6random_10_generator_9Generator_2__repr____pyx_specialmethod___pyx_pw_5numpy_6random_10_generator_9Generator_3__repr____pyx_pw_5numpy_6random_10_generator_9Generator_1__init____Pyx_IterFinish__pyx_pw___pyx_memoryviewslice_3__setstate_cython____pyx_builtin_TypeError__pyx_pw___pyx_array_3__setstate_cython____pyx_pw___pyx_memoryview_3__setstate_cython____pyx_memview_slice__pyx_memoryview_setitem_slice_assignment__pyx_pw___pyx_MemviewEnum_3__setstate_cython____pyx_array_getbuffer__pyx_pw___pyx_memoryview_1__reduce_cython____pyx_pw___pyx_array_1__reduce_cython____pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_pw_5numpy_6random_10_generator_9Generator_9__setstate____pyx_memoryview_is_slice__Pyx_PyObject_GetItem_Slow__Pyx_PyObject_GetItem__pyx_array___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_63logistic__pyx_f_5numpy_6random_7_common_cont__pyx_pw_5numpy_6random_10_generator_9Generator_61gumbel__pyx_pw_5numpy_6random_10_generator_9Generator_13spawn__Pyx_PyInt_As_npy_intp__Pyx_PyInt_As_int64_t__pyx_pw_5numpy_6random_10_generator_9Generator_19exponential__pyx_pw_5numpy_6random_10_generator_9Generator_67rayleigh__pyx_pw_5numpy_6random_10_generator_9Generator_77poisson__pyx_f_5numpy_6random_7_common_disc__Pyx_ImportDottedModule.constprop.0__pyx_memoryview_convert_item_to_object__pyx_memoryviewslice_convert_item_to_object__pyx_memoryview_assign_item_from_object__pyx_memoryviewslice_assign_item_from_object_unellipsify__pyx_builtin_Ellipsis__pyx_mp_ass_subscript_memoryview__pyx_memoryview___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_47standard_cauchy__pyx_pw_5numpy_6random_10_generator_9Generator_69wald__pyx_pw_5numpy_6random_10_generator_9Generator_51vonmises__pyx_pw_5numpy_6random_10_generator_9Generator_45noncentral_chisquare__pyx_pw_5numpy_6random_10_generator_9Generator_17beta__pyx_pw_5numpy_6random_10_generator_9Generator_39f__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_pw_5numpy_6random_10_generator_9Generator_57power__pyx_pw_5numpy_6random_10_generator_9Generator_43chisquare__pyx_pw_5numpy_6random_10_generator_9Generator_53pareto__pyx_pw_5numpy_6random_10_generator_9Generator_85logseries__pyx_pw_5numpy_6random_10_generator_9Generator_81geometric__pyx_pw_5numpy_6random_10_generator_9Generator_49standard_t__pyx_pw_5numpy_6random_10_generator_9Generator_79zipf__pyx_pw_5numpy_6random_10_generator_9Generator_55weibull__pyx_pw_5numpy_6random_10_generator_9Generator_37gamma__pyx_memoryview_get_item_pointer__pyx_builtin_IndexError__Pyx_PyObject_GetAttrStrNoError__Pyx_setup_reduce_is_named__Pyx_setup_reduce__Pyx_GetBuiltinName__Pyx__GetModuleGlobalName__pyx_pw_5numpy_6random_10_generator_9Generator_99permutation__pyx_dict_version.263__pyx_dict_cached_value.262__pyx_dict_version.261__pyx_dict_cached_value.260__pyx_dict_version.259__pyx_dict_cached_value.258__pyx_dict_version.257__pyx_dict_cached_value.256__pyx_dict_version.255__pyx_dict_cached_value.254__pyx_dict_version.253__pyx_dict_cached_value.252__pyx_dict_version.251__pyx_dict_cached_value.250__pyx_pw_5numpy_6random_10_generator_9Generator_93dirichletPyArray_API__pyx_dict_version.225__pyx_dict_cached_value.224__pyx_dict_version.223__pyx_dict_cached_value.222__pyx_dict_version.221__pyx_dict_cached_value.220__pyx_dict_version.219__pyx_dict_cached_value.218__pyx_dict_version.217__pyx_dict_cached_value.216__pyx_dict_version.215__pyx_dict_cached_value.214__pyx_pw_5numpy_6random_10_generator_9Generator_91multivariate_hypergeometric__pyx_dict_version.213__pyx_dict_cached_value.212__pyx_dict_version.211__pyx_dict_cached_value.210__pyx_dict_version.205__pyx_dict_cached_value.204__pyx_dict_version.203__pyx_dict_cached_value.202__pyx_dict_version.201__pyx_dict_cached_value.200__pyx_dict_version.199__pyx_dict_cached_value.198__pyx_dict_version.197__pyx_dict_cached_value.196__pyx_dict_version.209__pyx_dict_cached_value.208__pyx_dict_version.207__pyx_dict_cached_value.206__pyx_builtin_MemoryError__pyx_pw_5numpy_6random_10_generator_9Generator_87multivariate_normal__pyx_dict_version.173__pyx_dict_cached_value.172__pyx_dict_version.171__pyx_dict_cached_value.170__pyx_dict_version.169__pyx_dict_cached_value.168__pyx_dict_version.167__pyx_dict_cached_value.166__pyx_dict_version.165__pyx_dict_cached_value.164__pyx_dict_version.163__pyx_dict_cached_value.162__pyx_dict_version.161__pyx_dict_cached_value.160__pyx_dict_version.155__pyx_dict_cached_value.154__pyx_dict_version.159__pyx_dict_cached_value.158__pyx_dict_version.157__pyx_dict_cached_value.156__pyx_dict_version.153__pyx_dict_cached_value.152__pyx_pw_5numpy_6random_10_generator_9Generator_83hypergeometric__pyx_dict_version.151__pyx_dict_cached_value.150__pyx_dict_version.149__pyx_dict_cached_value.148__pyx_dict_version.147__pyx_dict_cached_value.146__pyx_dict_version.145__pyx_dict_cached_value.144__pyx_dict_version.143__pyx_dict_cached_value.142__pyx_f_5numpy_6random_7_common_discrete_broadcast_iii__pyx_pw_5numpy_6random_10_generator_9Generator_71triangular__pyx_dict_version.123__pyx_dict_cached_value.122__pyx_dict_version.121__pyx_dict_cached_value.120__pyx_dict_version.119__pyx_dict_cached_value.118__pyx_dict_version.117__pyx_dict_cached_value.116__pyx_dict_version.115__pyx_dict_cached_value.114__pyx_dict_version.113__pyx_dict_cached_value.112__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_pw_5numpy_6random_10_generator_9Generator_35standard_gamma__pyx_dict_version.111__pyx_dict_cached_value.110__pyx_dict_version.109__pyx_dict_cached_value.108__pyx_f_5numpy_6random_7_common_cont_f__pyx_pw_5numpy_6random_10_generator_9Generator_31standard_normal__pyx_dict_version.107__pyx_dict_cached_value.106__pyx_f_5numpy_6random_7_common_double_fill__pyx_dict_version.105__pyx_dict_cached_value.104__pyx_f_5numpy_6random_7_common_float_fill__pyx_pw_5numpy_6random_10_generator_9Generator_29uniform__pyx_dict_version.101__pyx_dict_cached_value.100__pyx_dict_version.99__pyx_dict_cached_value.98__pyx_dict_version.97__pyx_dict_cached_value.96__pyx_dict_version.103__pyx_dict_cached_value.102__pyx_builtin_OverflowError__pyx_pf_5numpy_6random_10_generator_9Generator_26choice__pyx_dict_version.95__pyx_dict_cached_value.94__pyx_dict_version.87__pyx_dict_cached_value.86__pyx_dict_version.85__pyx_dict_cached_value.84__pyx_dict_version.83__pyx_dict_cached_value.82__pyx_dict_version.81__pyx_dict_cached_value.80__pyx_dict_version.79__pyx_dict_cached_value.78__pyx_dict_version.77__pyx_dict_cached_value.76__pyx_dict_version.89__pyx_dict_cached_value.88__pyx_dict_version.93__pyx_dict_cached_value.92__pyx_dict_version.91__pyx_dict_cached_value.90__pyx_dict_version.67__pyx_dict_cached_value.66__pyx_dict_version.65__pyx_dict_cached_value.64__pyx_dict_version.43__pyx_dict_cached_value.42__pyx_dict_version.71__pyx_dict_cached_value.70__pyx_dict_version.69__pyx_dict_cached_value.68__pyx_dict_version.61__pyx_dict_cached_value.60__pyx_dict_version.59__pyx_dict_cached_value.58__pyx_dict_version.57__pyx_dict_cached_value.56__pyx_dict_version.55__pyx_dict_cached_value.54__pyx_dict_version.53__pyx_dict_cached_value.52__pyx_dict_version.63__pyx_dict_cached_value.62__pyx_f_5numpy_6random_7_common_kahan_sum__pyx_dict_version.75__pyx_dict_cached_value.74__pyx_dict_version.73__pyx_dict_cached_value.72__pyx_dict_version.41__pyx_dict_cached_value.40__pyx_dict_version.39__pyx_dict_cached_value.38__pyx_dict_version.51__pyx_dict_cached_value.50__pyx_dict_version.49__pyx_dict_cached_value.48__pyx_dict_version.47__pyx_dict_cached_value.46__pyx_dict_version.45__pyx_dict_cached_value.44__Pyx_TypeInfo_nn_uint64_t__pyx_pw_5numpy_6random_10_generator_9Generator_27choice__pyx_pw_5numpy_6random_10_generator_9Generator_25bytes__pyx_dict_version.36__pyx_dict_cached_value.35__pyx_pw_5numpy_6random_10_generator_9Generator_23integers__pyx_dict_version.34__pyx_dict_cached_value.33__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_dict_version.32__pyx_dict_cached_value.31__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_dict_version.16__pyx_dict_cached_value.15__pyx_dict_version.30__pyx_dict_cached_value.29__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_dict_version.28__pyx_dict_cached_value.27__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_dict_version.26__pyx_dict_cached_value.25__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_dict_version.24__pyx_dict_cached_value.23__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_dict_version.22__pyx_dict_cached_value.21__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_dict_version.20__pyx_dict_cached_value.19__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_dict_version.18__pyx_dict_cached_value.17__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_pw_5numpy_6random_10_generator_9Generator_15random__pyx_dict_version.10__pyx_dict_cached_value.9__pyx_dict_version.8__pyx_dict_cached_value.7__pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_dict_version.6__pyx_dict_cached_value.5__pyx_dict_version.4__pyx_dict_cached_value.3__pyx_pymod_exec__generator__pyx_CyFunctionType_type__pyx_builtin_RuntimeWarning__pyx_builtin_UserWarning__pyx_builtin_NotImplementedError__pyx_builtin___import____pyx_builtin_ImportError__pyx_type_5numpy_6random_10_generator_Generator__pyx_collections_abc_Sequencegenericstridedindirect_contiguous__pyx_vtable_array__pyx_type___pyx_array__pyx_vtabptr_array__pyx_type___pyx_MemviewEnum__pyx_vtable_memoryview__pyx_type___pyx_memoryview__pyx_vtable__memoryviewslice__pyx_type___pyx_memoryviewslice__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_f_5numpy_6random_7_common_check_constraint__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_f_5numpy_6random_7_common_validate_output_shape__pyx_t_8.286__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_EnumPyArray_RUNTIME_VERSION__pyx_mdef_5numpy_6random_10_generator_9Generator_7__getstate____pyx_mdef_5numpy_6random_10_generator_9Generator_9__setstate____pyx_mdef_5numpy_6random_10_generator_9Generator_11__reduce____pyx_mdef_5numpy_6random_10_generator_9Generator_13spawn__pyx_dict_version.285__pyx_dict_cached_value.284__pyx_dict_version.283__pyx_dict_cached_value.282__pyx_mdef_5numpy_6random_10_generator_9Generator_15random__pyx_mdef_5numpy_6random_10_generator_9Generator_17beta__pyx_mdef_5numpy_6random_10_generator_9Generator_19exponential__pyx_dict_version.281__pyx_dict_cached_value.280__pyx_dict_version.279__pyx_dict_cached_value.278__pyx_mdef_5numpy_6random_10_generator_9Generator_21standard_exponential__pyx_dict_version.277__pyx_dict_cached_value.276__pyx_dict_version.275__pyx_dict_cached_value.274__pyx_mdef_5numpy_6random_10_generator_9Generator_23integers__pyx_mdef_5numpy_6random_10_generator_9Generator_25bytes__pyx_mdef_5numpy_6random_10_generator_9Generator_27choice__pyx_mdef_5numpy_6random_10_generator_9Generator_29uniform__pyx_dict_version.273__pyx_dict_cached_value.272__pyx_dict_version.271__pyx_dict_cached_value.270__pyx_mdef_5numpy_6random_10_generator_9Generator_31standard_normal__pyx_mdef_5numpy_6random_10_generator_9Generator_33normal__pyx_dict_version.269__pyx_dict_cached_value.268__pyx_dict_version.267__pyx_dict_cached_value.266__pyx_mdef_5numpy_6random_10_generator_9Generator_35standard_gamma__pyx_mdef_5numpy_6random_10_generator_9Generator_37gamma__pyx_mdef_5numpy_6random_10_generator_9Generator_39f__pyx_mdef_5numpy_6random_10_generator_9Generator_41noncentral_f__pyx_mdef_5numpy_6random_10_generator_9Generator_43chisquare__pyx_mdef_5numpy_6random_10_generator_9Generator_45noncentral_chisquare__pyx_mdef_5numpy_6random_10_generator_9Generator_47standard_cauchy__pyx_mdef_5numpy_6random_10_generator_9Generator_49standard_t__pyx_mdef_5numpy_6random_10_generator_9Generator_51vonmises__pyx_mdef_5numpy_6random_10_generator_9Generator_53pareto__pyx_mdef_5numpy_6random_10_generator_9Generator_55weibull__pyx_mdef_5numpy_6random_10_generator_9Generator_57power__pyx_mdef_5numpy_6random_10_generator_9Generator_59laplace__pyx_mdef_5numpy_6random_10_generator_9Generator_61gumbel__pyx_mdef_5numpy_6random_10_generator_9Generator_63logistic__pyx_mdef_5numpy_6random_10_generator_9Generator_65lognormal__pyx_mdef_5numpy_6random_10_generator_9Generator_67rayleigh__pyx_mdef_5numpy_6random_10_generator_9Generator_69wald__pyx_mdef_5numpy_6random_10_generator_9Generator_71triangular__pyx_mdef_5numpy_6random_10_generator_9Generator_73binomial__pyx_mdef_5numpy_6random_10_generator_9Generator_75negative_binomial__pyx_mdef_5numpy_6random_10_generator_9Generator_77poisson__pyx_mdef_5numpy_6random_10_generator_9Generator_79zipf__pyx_mdef_5numpy_6random_10_generator_9Generator_81geometric__pyx_mdef_5numpy_6random_10_generator_9Generator_83hypergeometric__pyx_mdef_5numpy_6random_10_generator_9Generator_85logseries__pyx_mdef_5numpy_6random_10_generator_9Generator_87multivariate_normal__pyx_mdef_5numpy_6random_10_generator_9Generator_89multinomial__pyx_mdef_5numpy_6random_10_generator_9Generator_91multivariate_hypergeometric__pyx_mdef_5numpy_6random_10_generator_9Generator_93dirichlet__pyx_mdef_5numpy_6random_10_generator_9Generator_95permuted__pyx_mdef_5numpy_6random_10_generator_9Generator_97shuffle__pyx_mdef_5numpy_6random_10_generator_9Generator_99permutation__pyx_mdef_5numpy_6random_10_generator_1default_rng__pyx_pw_5numpy_6random_10_generator_1default_rng__pyx_dict_version.265__pyx_dict_cached_value.264__pyx_tp_new_array__pyx_memoryview_copy_new_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__pyx_memoryview_copy_fortran__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy__pyx_memoryview_copy__pyx_pw_5numpy_6random_10_generator_9Generator_95permuted__pyx_dict_version.233__pyx_dict_cached_value.232__pyx_dict_version.231__pyx_dict_cached_value.230__pyx_dict_version.229__pyx_dict_cached_value.228__pyx_dict_version.227__pyx_dict_cached_value.226__pyx_pw_5numpy_6random_10_generator_9Generator_41noncentral_f__pyx_pw_5numpy_6random_10_generator_9Generator_97shuffle__pyx_dict_version.241__pyx_dict_cached_value.240__pyx_dict_version.239__pyx_dict_cached_value.238__pyx_dict_version.237__pyx_dict_cached_value.236__pyx_dict_version.235__pyx_dict_cached_value.234__pyx_dict_version.249__pyx_dict_cached_value.248__pyx_dict_version.247__pyx_dict_cached_value.246__pyx_dict_version.245__pyx_dict_cached_value.244__pyx_dict_version.243__pyx_dict_cached_value.242__pyx_pw_5numpy_6random_10_generator_9Generator_89multinomial__pyx_dict_version.195__pyx_dict_cached_value.194__pyx_dict_version.193__pyx_dict_cached_value.192__pyx_dict_version.191__pyx_dict_cached_value.190__pyx_dict_version.189__pyx_dict_cached_value.188__pyx_dict_version.187__pyx_dict_cached_value.186__pyx_dict_version.185__pyx_dict_cached_value.184__pyx_dict_version.183__pyx_dict_cached_value.182__pyx_dict_version.181__pyx_dict_cached_value.180__pyx_dict_version.179__pyx_dict_cached_value.178__pyx_dict_version.177__pyx_dict_cached_value.176__pyx_dict_version.175__pyx_dict_cached_value.174__pyx_pw_5numpy_6random_10_generator_9Generator_75negative_binomial__pyx_dict_version.141__pyx_dict_cached_value.140__pyx_dict_version.139__pyx_dict_cached_value.138__pyx_dict_version.137__pyx_dict_cached_value.136__pyx_pw_5numpy_6random_10_generator_9Generator_21standard_exponential__pyx_dict_version.14__pyx_dict_cached_value.13__pyx_dict_version.12__pyx_dict_cached_value.11__pyx_pw_5numpy_6random_10_generator_9Generator_73binomial__pyx_dict_version.135__pyx_dict_cached_value.134__pyx_dict_version.133__pyx_dict_cached_value.132__pyx_dict_version.127__pyx_dict_cached_value.126__pyx_dict_version.125__pyx_dict_cached_value.124__pyx_dict_version.131__pyx_dict_cached_value.130__pyx_dict_version.129__pyx_dict_cached_value.128__pyx_pw_5numpy_6random_10_generator_9Generator_33normal__pyx_pw_5numpy_6random_10_generator_9Generator_59laplace__pyx_pw_5numpy_6random_10_generator_9Generator_65lognormal__pyx_moduledef__pyx_CyFunction_methods__pyx_CyFunction_members__pyx_CyFunction_getsets__pyx_methods__pyx_moduledef_slots__pyx_methods__memoryviewslice__pyx_tp_as_sequence_memoryview__pyx_tp_as_mapping_memoryview__pyx_tp_as_buffer_memoryview__pyx_methods_memoryview__pyx_getsets_memoryview__pyx_methods_Enum__pyx_tp_as_sequence_array__pyx_tp_as_mapping_array__pyx_tp_as_buffer_array__pyx_methods_array__pyx_getsets_array__pyx_methods_5numpy_6random_10_generator_Generator__pyx_getsets_5numpy_6random_10_generator_Generator__pyx_doc_5numpy_6random_10_generator_9Generator_12spawn__pyx_doc_5numpy_6random_10_generator_9Generator_14random__pyx_doc_5numpy_6random_10_generator_9Generator_16beta__pyx_doc_5numpy_6random_10_generator_9Generator_18exponential__pyx_doc_5numpy_6random_10_generator_9Generator_20standard_exponential__pyx_doc_5numpy_6random_10_generator_9Generator_22integers__pyx_doc_5numpy_6random_10_generator_9Generator_24bytes__pyx_doc_5numpy_6random_10_generator_9Generator_26choice__pyx_doc_5numpy_6random_10_generator_9Generator_28uniform__pyx_doc_5numpy_6random_10_generator_9Generator_30standard_normal__pyx_doc_5numpy_6random_10_generator_9Generator_32normal__pyx_doc_5numpy_6random_10_generator_9Generator_34standard_gamma__pyx_doc_5numpy_6random_10_generator_9Generator_36gamma__pyx_doc_5numpy_6random_10_generator_9Generator_38f__pyx_doc_5numpy_6random_10_generator_9Generator_40noncentral_f__pyx_doc_5numpy_6random_10_generator_9Generator_42chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_44noncentral_chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_46standard_cauchy__pyx_doc_5numpy_6random_10_generator_9Generator_48standard_t__pyx_doc_5numpy_6random_10_generator_9Generator_50vonmises__pyx_doc_5numpy_6random_10_generator_9Generator_52pareto__pyx_doc_5numpy_6random_10_generator_9Generator_54weibull__pyx_doc_5numpy_6random_10_generator_9Generator_56power__pyx_doc_5numpy_6random_10_generator_9Generator_58laplace__pyx_doc_5numpy_6random_10_generator_9Generator_60gumbel__pyx_doc_5numpy_6random_10_generator_9Generator_62logistic__pyx_doc_5numpy_6random_10_generator_9Generator_64lognormal__pyx_doc_5numpy_6random_10_generator_9Generator_66rayleigh__pyx_doc_5numpy_6random_10_generator_9Generator_68wald__pyx_doc_5numpy_6random_10_generator_9Generator_70triangular__pyx_doc_5numpy_6random_10_generator_9Generator_72binomial__pyx_doc_5numpy_6random_10_generator_9Generator_74negative_binomial__pyx_doc_5numpy_6random_10_generator_9Generator_76poisson__pyx_doc_5numpy_6random_10_generator_9Generator_78zipf__pyx_doc_5numpy_6random_10_generator_9Generator_80geometric__pyx_doc_5numpy_6random_10_generator_9Generator_82hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_84logseries__pyx_doc_5numpy_6random_10_generator_9Generator_86multivariate_normal__pyx_doc_5numpy_6random_10_generator_9Generator_88multinomial__pyx_doc_5numpy_6random_10_generator_9Generator_90multivariate_hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_92dirichlet__pyx_doc_5numpy_6random_10_generator_9Generator_94permuted__pyx_doc_5numpy_6random_10_generator_9Generator_96shuffle__pyx_doc_5numpy_6random_10_generator_9Generator_98permutation__pyx_doc_5numpy_6random_10_generator_default_rngcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrydistributions.cfe_doublewe_doubleke_doublefe_floatwe_floatke_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatrandom_mvhg_count.crandom_mvhg_marginals.crandom_hypergeometric.clogfactorial.clogfact__FRAME_END____pyx_module_is_main_numpy__random___generator__dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyUnicode_FromFormatlog1pf@@GLIBC_2.2.5PyNumber_NegativePyObject_SetItemPyList_Newrandom_laplace_PyUnicode_ReadyPyExc_SystemErrorPyDict_SetItemStringfree@@GLIBC_2.2.5PyDict_Sizerandom_buffered_bounded_boolrandom_geometric_inversionPyException_SetTracebackPyExc_NotImplementedErrorrandom_weibullPyMethod_Typerandom_f_ITM_deregisterTMCloneTablePyGILState_ReleasePyFloat_TypePyTuple_TypePyObject_FormatPyErr_RestorePyList_AsTuplePyObject_ClearWeakRefs_PyThreadState_UncheckedGetPyModuleDef_Initrandom_multivariate_hypergeometric_countPyEval_RestoreThreadPy_EnterRecursiveCallPyFrame_NewPyMem_Freerandom_negative_binomialrandom_standard_cauchy__isnan@@GLIBC_2.2.5PyCapsule_GetNamePyNumber_InPlaceAddPyBuffer_Releasevsnprintf@@GLIBC_2.2.5exp@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyExc_BufferErrorPyImport_AddModulePyBytes_FromStringAndSizerandom_standard_exponential_fill_f_PyObject_GenericGetAttrWithDictPyBytes_TypePyObject_SetAttrStringPyErr_WarnExrandom_standard_gammarandom_binomial_btpe_Py_DeallocPyModule_NewObjectPyErr_NoMemoryPyErr_SetObjectPyObject_GC_DelPyErr_NormalizeExceptionPyNumber_Absoluterandom_logseriesPyNumber_MultiplyPyLong_FromSize_trandom_rayleighrandom_standard_exponentialPyObject_RichComparerandom_uniformrandom_poisson_finistrlen@@GLIBC_2.2.5PyImport_GetModuleDictrandom_bounded_uint64_fillPyObject_GC_TrackPyExc_RuntimeErrorPyCMethod_NewPyErr_GivenExceptionMatchesPyErr_SetStringrandom_bounded_uint16_fillPyObject_IsInstance_PyObject_GC_NewPyExc_ExceptionPyExc_ValueErrorstrrchr@@GLIBC_2.2.5PyExc_DeprecationWarningrandom_multinomialPyObject_MallocPyExc_TypeErrorPySlice_TypePyIndex_CheckPyGILState_EnsurePyInterpreterState_GetIDrandom_logisticPySequence_ContainsPyTuple_GetItem_PyLong_Copymemset@@GLIBC_2.2.5PyMem_Reallocrandom_standard_uniform_fill_fPyErr_ExceptionMatchesrandom_bounded_uint64pow@@GLIBC_2.2.5random_positive_intlog@@GLIBC_2.2.5random_standard_gamma_frandom_triangularrandom_buffered_bounded_uint32PyOS_snprintf_Py_FatalErrorFuncPyTraceBack_Herelog1p@@GLIBC_2.2.5fmod@@GLIBC_2.2.5PyObject_CallFinalizerFromDeallocrandom_powerrandom_bounded_uint8_fillPyObject_NotPyObject_Freerandom_noncentral_fPyNumber_InPlaceTrueDividerandom_standard_exponential_inv_fill_fPyLong_FromSsize_tPyFloat_FromDoubleacos@@GLIBC_2.2.5PyLong_FromLongmemcmp@@GLIBC_2.2.5PyLong_AsSsize_tPyObject_RichCompareBoolrandom_buffered_bounded_uint8logfactorialPyModule_GetNamePyErr_ClearPyList_AppendPyCapsule_IsValidPyNumber_OrPyImport_GetModule_PyUnicode_FastCopyCharactersrandom_beta_Py_FalseStruct__gmon_start__random_exponentialexpf@@GLIBC_2.2.5PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyDict_DelItemrandom_hypergeometricmemcpy@@GLIBC_2.14expm1@@GLIBC_2.2.5PyNumber_RemainderPyType_Modifiedrandom_gammaPyObject_SetAttrPyBytes_FromStringPyErr_Occurredrandom_standard_uniform_f_Py_EllipsisObjectrandom_loggamPyInit__generatorPyLong_AsLongPyImport_ImportModulesqrtf@@GLIBC_2.2.5_PyDict_GetItem_KnownHashPyObject_CallObjectPy_LeaveRecursiveCallPyObject_VectorcallDictrandom_gamma_fPy_OptimizeFlagrandom_zipfPyTuple_GetSlicePyDict_GetItemStringpowf@@GLIBC_2.2.5PyObject_Sizemalloc@@GLIBC_2.2.5random_standard_exponential_frandom_pareto_Py_NoneStructPyExc_ModuleNotFoundErrorPyExc_ZeroDivisionErrorPyFloat_AsDoublePyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectrandom_positive_int64PyThread_allocate_lockrandom_geometric_searchPyObject_Hashrandom_standard_tPyUnicode_Comparerandom_vonmisesrandom_bounded_uint32_fillrandom_standard_normal_frandom_positive_int32random_standard_uniform_Py_TrueStructlogf@@GLIBC_2.2.5random_normalrandom_chisquarePyDict_NewPyExc_IndexErrorPyObject_GC_IsFinalizedPyBool_TypePyObject_GetBufferPyLong_AsUnsignedLongPyDict_NextPyBaseObject_Typememmove@@GLIBC_2.2.5random_standard_exponential_fillrandom_intervalrandom_waldPyLong_FromUnsignedLongrandom_noncentral_chisquarePyUnicode_AsUTF8PyLong_Typerandom_standard_normalPyCapsule_Typerandom_standard_exponential_inv_fill_PyObject_GetDictPtrPyException_SetCausePyErr_Fetchrandom_lognormalPyUnicode_FromStringrandom_buffered_bounded_uint16PyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringrandom_binomialPyExc_ImportErrorPyDict_SetItemrandom_uintPySequence_TuplePyExc_AttributeErrorrandom_gumbelrandom_standard_uniform_fillPyObject_IsSubclassPyExc_StopIterationPySequence_ListPyExc_RuntimeWarningrandom_standard_normal_fill_ffloor@@GLIBC_2.2.5PyUnicode_TypePyCapsule_NewPyUnicode_DecodePyErr_Formatrandom_bounded_bool_fillPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDictrandom_binomial_inversion_ITM_registerTMCloneTablePyLong_FromLongLongPyUnicode_FromOrdinalPyUnicode_ConcatPyNumber_InPlaceMultiplyrandom_multivariate_hypergeometric_marginalsPyNumber_IndexPyObject_GetAttrsqrt@@GLIBC_2.2.5random_geometricPyCFunction_Type_PyDict_NewPresizedPyUnicode_FormatPyLong_FromStringPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5_initPyNumber_Subtractrandom_standard_normal_fillPyNumber_MatrixMultiplyPyUnicode_NewPyThread_free_lockPyTuple_PackPyCode_NewWithPosOnlyArgsPy_GetVersionPyCode_NewEmptyPyNumber_TrueDividePyObject_GC_UnTrackPyExc_UnboundLocalErrorPyList_TypePyImport_ImportPyNumber_FloorDivide.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment88$.o``8 @!!Ho55BUo77Pd(8(803nBXkXkxs ~W8, 8, 0 0  88 BBdpp! 0' 0/pz (v'O'